Skip to main content

Cysteinyl Leukotrienes and Disease

  • Chapter
Bioactive Lipid Mediators

Abstract

Cysteinyl leukotrienes (cys-LTs) are peptide-conjugated lipid inflammatory mediators generated predominantly by hematopoietic effector cells. Although they were originally recognized based on their capacity to potently induce vascular leakage and smooth muscle contraction, they are now known to elicit a wide range of effects on hematopoietic and structural cells and to have a key role in the initiation and amplification of type 2 immunity and eosinophilic inflammation. The three ligands comprising the cys-LTs, that is, leukotriene (LT)C4, LTD4, and LTE4, mediate their effects through at least three G protein-coupled receptors (GPCRs), termed the type 1 and type 2 cys-LT receptors (CysLT1R and CysLT2R, respectively), and the recently identified third receptor, GPR99, the only receptor with a binding preference for LTE4. This chapter is concerned primarily with the expanding role of the cys-LTs and their receptors in asthma and aspirin-exacerbated respiratory disease, and touches on the potential implications for other pathobiological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weiss JW, Drazen JM, McFadden ER Jr, Weller PF, Corey EJ, Lewis RA, Austen KF (1982) Comparative bronchoconstrictor effects of histamine, leukotriene C, and leukotriene D in normal human volunteers. Trans Assoc Am Physicians 95:30–35

    CAS  PubMed  Google Scholar 

  2. Soter NA, Lewis RA, Corey EJ, Austen KF (1983) Local effects of synthetic leukotrienes (LTC4, LTD4, LTE4, and LTB4) in human skin. J Invest Dermatol 80(2):115–119

    Article  CAS  PubMed  Google Scholar 

  3. Wenzel SE, Larsen GL, Johnston K, Voelkel NF, Westcott JY (1990) Elevated levels of leukotriene C4 in bronchoalveolar lavage fluid from atopic asthmatics after endobronchial allergen challenge. Am Rev Respir Dis 142(1):112–119

    Article  CAS  PubMed  Google Scholar 

  4. Figueroa DJ, Borish L, Baramki D, Philip G, Austin CP, Evans JF (2003) Expression of cysteinyl leukotriene synthetic and signalling proteins in inflammatory cells in active seasonal allergic rhinitis. Clin Exp Allergy 33(10):1380–1388

    Article  CAS  PubMed  Google Scholar 

  5. Drazen JM, O’Brien J, Sparrow D, Weiss ST, Martins MA, Israel E, Fanta CH (1992) Recovery of leukotriene E4 from the urine of patients with airway obstruction. Am Rev Respir Dis 146(1):104–108

    Article  CAS  PubMed  Google Scholar 

  6. Iovannisci DM, Lammer EJ, Steiner L, Cheng S, Mahoney LT, Davis PH, Lauer RM, Burns TL (2007) Association between a leukotriene C4 synthase gene promoter polymorphism and coronary artery calcium in young women: the Muscatine Study. Arterioscler Thromb Vasc Biol 27(2):394–399

    Article  CAS  PubMed  Google Scholar 

  7. Freiberg JJ, Tybjaerg-Hansen A, Sillesen H, Jensen GB, Nordestgaard BG (2008) Promotor polymorphisms in leukotriene C4 synthase and risk of ischemic cerebrovascular disease. Arterioscler Thromb Vasc Biol 28(5):990–996

    Article  CAS  PubMed  Google Scholar 

  8. Freiberg JJ, Tybjaerg-Hansen A, Nordestgaard BG (2010) Novel mutations in leukotriene C4 synthase and risk of cardiovascular disease based on genotypes from 50,000 individuals. J Thromb Haemost 8(8):1694–1701

    Google Scholar 

  9. Maznyczka A, Braund P, Mangino M, Samani NJ (2008) Arachidonate 5-lipoxygenase (5-LO) promoter genotype and risk of myocardial infarction: a case-control study. Atherosclerosis 199(2):328–332

    Article  CAS  PubMed  Google Scholar 

  10. Ingelsson E, Yin L, Back M (2012) Nationwide cohort study of the leukotriene receptor antagonist montelukast and incident or recurrent cardiovascular disease. J Allergy Clin Immunol 129(3):702–707

    Article  CAS  PubMed  Google Scholar 

  11. Bisgaard H (2003) A randomized trial of montelukast in respiratory syncytial virus postbronchiolitis. Am J Respir Crit Care Med 167(3):379–383

    Article  PubMed  Google Scholar 

  12. Goldbart AD, Goldman JL, Veling MC, Gozal D (2005) Leukotriene modifier therapy for mild sleep-disordered breathing in children. Am J Respir Crit Care Med 172(3):364–370

    Google Scholar 

  13. Goldbart AD, Krishna J, Li RC, Serpero LD, Gozal D (2006) Inflammatory mediators in exhaled breath condensate of children with obstructive sleep apnea syndrome. Chest 130(1):143–148

    Article  PubMed  Google Scholar 

  14. Stanke-Labesque F, Back M, Lefebvre B, Tamisier R, Baguet JP, Arnol N, Levy P, Pepin JL (2009) Increased urinary leukotriene E4 excretion in obstructive sleep apnea: effects of obesity and hypoxia. J Allergy Clin Immunol 124(2):364–370

    Google Scholar 

  15. Shen Y, Xu Z, Shen K (2011) Urinary leukotriene E4, obesity, and adenotonsillar hypertrophy in Chinese children with sleep disordered breathing. Sleep 34(8):1135–041

    Google Scholar 

  16. Erbagci Z (2002) The leukotriene receptor antagonist montelukast in the treatment of chronic idiopathic urticaria: a single-blind, placebo-controlled, crossover clinical study. J Allergy Clin Immunol 110(3):484–488

    Article  CAS  PubMed  Google Scholar 

  17. Khan S, Lynch N (2012) Efficacy of montelukast as added therapy in patients with chronic idiopathic urticaria. Inflamm Allergy Drug Targets 11(3):235–243

    Article  CAS  PubMed  Google Scholar 

  18. Wu SH, Liao PY, Chen XQ, Yin PL, Dong L (2014) Add-on therapy with montelukast in treatment of Henoch-Schonlein purpura. Pediatr Int 56(3):315–322

    Article  Google Scholar 

  19. Clark JD, Milona N, Knopf JL (1990) Purification of a 110-kilodalton cytosolic phospholipase A2 from the human monocytic cell line U937. Proc Natl Acad Sci U S A 87(19):7708–7712

    Google Scholar 

  20. Malaviya R, Malaviya R, Jakschik BA (1993) Reversible translocation of 5-lipoxygenase in mast cells upon IgE/antigen stimulation. J Biol Chem 268(7):4939–4944

    CAS  PubMed  Google Scholar 

  21. Reid GK, Kargman S, Vickers PJ, Mancini JA, Leveille C, Ethier D, Miller DK, Gillard JW, Dixon RA, Evans JF (1990) Correlation between expression of 5-lipoxygenase-activating protein, 5-lipoxygenase, and cellular leukotriene synthesis. J Biol Chem 265(32):19818–19823

    CAS  PubMed  Google Scholar 

  22. Lam BK, Penrose JF, Freeman GJ, Austen KF (1994) Expression cloning of a cDNA for human leukotriene C4 synthase, an integral membrane protein conjugating reduced glutathione to leukotriene A4. Proc Natl Acad Sci U S A 91(16):7663–7667

    Google Scholar 

  23. Leier I, Jedlitschky G, Buchholz U, Cole SP, Deeley RG, Keppler D (1994) The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J Biol Chem 269(45):27807–27810

    CAS  PubMed  Google Scholar 

  24. Shi ZZ, Han B, Habib GM, Matzuk MM, Lieberman MW (2001) Disruption of gamma-glutamyl leukotrienase results in disruption of leukotriene D4 synthesis in vivo and attenuation of the acute inflammatory response. Mol Cell Biol 21(16):5389–5395

    Google Scholar 

  25. Lee CW, Lewis RA, Corey EJ, Austen KF (1983) Conversion of leukotriene D4 to leukotriene E4 by a dipeptidase released from the specific granule of human polymorphonuclear leucocytes. Immunology 48(1):27–35

    Google Scholar 

  26. Asano K, Lilly CM, O’Donnell WJ, Israel E, Fischer A, Ransil BJ, Drazen JM (1995) Diurnal variation of urinary leukotriene E4 and histamine excretion rates in normal subjects and patients with mild-to-moderate asthma. J Allergy Clin Immunol 96(5 pt 1):643–651

    Article  CAS  PubMed  Google Scholar 

  27. Fanning LB, Boyce JA (2013) Lipid mediators and allergic diseases. Ann Allergy Asthma Immunol 111(3):155–162

    Google Scholar 

  28. Murphy RC, Hammarstrom S, Samuelsson B (1979) Leukotriene C: a slow-reacting substance from murine mastocytoma cells. Proc Natl Acad Sci U S A 76(9):4275–4279

    Google Scholar 

  29. Warner JA, Peters SP, Lichtenstein LM, Hubbard W, Yancey KB, Stevenson HC, Miller PJ, MacGlashan DW Jr (1989) Differential release of mediators from human basophils: differences in arachidonic acid metabolism following activation by unrelated stimuli. J Leukoc Biol 45(6):558–571

    CAS  PubMed  Google Scholar 

  30. Weller PF, Lee CW, Foster DW, Corey EJ, Austen KF, Lewis RA (1983) Generation and metabolism of 5-lipoxygenase pathway leukotrienes by human eosinophils: predominant production of leukotriene C4. Proc Natl Acad Sci U S A 80(24):7626–7630

    Google Scholar 

  31. Abe M, Hugli TE (1988) Characterization of leukotriene C4 synthetase in mouse peritoneal exudate cells. Biochim Biophys Acta 959(3):386–398

    Article  CAS  PubMed  Google Scholar 

  32. Barrett NA, Maekawa A, Rahman OM, Austen KF, Kanaoka Y (2009) Dectin-2 recognition of house dust mite triggers cysteinyl leukotriene generation by dendritic cells. J Immunol 182(2):1119–1128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Seymour ML, Rak S, Aberg D, Riise GC, Penrose JF, Kanaoka Y, Austen KF, Holgate ST, Sampson AP (2001) Leukotriene and prostanoid pathway enzymes in bronchial biopsies of seasonal allergic asthmatics. Am J Respir Crit Care Med 164(11):2051–2056

    Article  CAS  PubMed  Google Scholar 

  34. Hsieh FH, Lam BK, Penrose JF, Austen KF, Boyce JA (2001) T helper cell type 2 cytokines coordinately regulate immunoglobulin E-dependent cysteinyl leukotriene production by human cord blood-derived mast cells: profound induction of leukotriene C4 synthase expression by interleukin 4. J Exp Med 193(1):123–133

    Google Scholar 

  35. Wenzel SE, Westcott JY, Smith HR, Larsen GL (1989) Spectrum of prostanoid release after bronchoalveolar allergen challenge in atopic asthmatics and in control groups. An alteration in the ratio of bronchoconstrictive to bronchoprotective mediators. Am Rev Respir Dis 139(2):450–457

    Article  CAS  PubMed  Google Scholar 

  36. Wenzel SE, Westcott JY, Larsen GL (1991) Bronchoalveolar lavage fluid mediator levels 5 minutes after allergen challenge in atopic subjects with asthma: relationship to the development of late asthmatic responses. J Allergy Clin Immunol 87(2):540–548

    Article  CAS  PubMed  Google Scholar 

  37. Wenzel SE, Fowler AA III, Schwartz LB (1988) Activation of pulmonary mast cells by bronchoalveolar allergen challenge. In vivo release of histamine and tryptase in atopic subjects with and without asthma. Am Rev Respir Dis 137(5):1002–1008

    Article  CAS  PubMed  Google Scholar 

  38. Gauvreau GM, Watson RM, O’Byrne PM (1999) Protective effects of inhaled PGE2 on allergen-induced airway responses and airway inflammation. Am J Respir Crit Care Med 159(1):31–36

    Article  CAS  PubMed  Google Scholar 

  39. Taniguchi M, Higashi N, Ono E, Mita H, Akiyama K (2008) Hyperleukotrieneuria in patients with allergic and inflammatory disease. Allergol Int 57(4):313–320

    Article  CAS  PubMed  Google Scholar 

  40. Ono E, Taniguchi M, Mita H, Higashi N, Fukutomi Y, Tanimoto H, Sekiya K, Oshikata C, Tsuburai T, Tsurikisawa N et al (2008) Increased urinary leukotriene E4 concentration in patients with eosinophilic pneumonia. Eur Respir J 32(2):437–442

    Article  CAS  PubMed  Google Scholar 

  41. Laidlaw TM, Kidder MS, Bhattacharyya N, Xing W, Shen S, Milne GL, Castells MC, Chhay H, Boyce JA (2012) Cysteinyl leukotriene overproduction in aspirin-exacerbated respiratory disease is driven by platelet-adherent leukocytes. Blood 119(16):3790–3798

    Google Scholar 

  42. Maclouf JA, Murphy RC (1988) Transcellular metabolism of neutrophil-derived leukotriene A4 by human platelets. A potential cellular source of leukotriene C4. J Biol Chem 263(1):174–181

    CAS  PubMed  Google Scholar 

  43. Maugeri N, Evangelista V, Celardo A, Dell’Elba G, Martelli N, Piccardoni P, de Gaetano G, Cerletti C (1994) Polymorphonuclear leukocyte–platelet interaction: role of P-selectin in thromboxane B2 and leukotriene C4 cooperative synthesis. Thromb Haemost 72(3):450–456

    CAS  PubMed  Google Scholar 

  44. Laidlaw TM, Cutler AJ, Kidder MS, Liu T, Cardet JC, Chhay H, Feng C, Boyce JA (2014) Prostaglandin E resistance in granulocytes from patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 133:1692–1701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Lee TH, Austen KF, Corey EJ, Drazen JM (1984) Leukotriene E4-induced airway hyperresponsiveness of guinea pig tracheal smooth muscle to histamine and evidence for three separate sulfidopeptide leukotriene receptors. Proc Natl Acad Sci U S A 81(15):4922–4925

    Google Scholar 

  46. Lynch KR, O’Neill GP, Liu Q, Im DS, Sawyer N, Metters KM, Coulombe N, Abramovitz M, Figueroa DJ, Zeng Z et al (1999) Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature 399(6738):789–793

    Article  CAS  PubMed  Google Scholar 

  47. Heise CE, O’Dowd BF, Figueroa DJ, Sawyer N, Nguyen T, Im DS, Stocco R, Bellefeuille JN, Abramovitz M, Cheng R et al (2000) Characterization of the human cysteinyl leukotriene 2 receptor. J Biol Chem 275(39):30531–30536

    Article  CAS  PubMed  Google Scholar 

  48. Kanaoka Y, Maekawa A, Austen KF (2013) Identification of GPR99 as a potential third cysteinyl leukotriene receptor with a preference for leukotriene E4. J Biol Chem 288:10967–10972

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Weiss JW, Drazen JM, Coles N, McFadden ER Jr, Weller PF, Corey EJ, Lewis RA, Austen KF (1982) Bronchoconstrictor effects of leukotriene C in humans. Science 216(4542):196–198

    Article  CAS  PubMed  Google Scholar 

  50. Weiss JW, Drazen JM, McFadden ER Jr, Weller P, Corey EJ, Lewis RA, Austen KF (1983) Airway constriction in normal humans produced by inhalation of leukotriene D. Potency, time course, and effect of aspirin therapy. JAMA 249(20):2814–2817

    Article  CAS  PubMed  Google Scholar 

  51. Griffin M, Weiss JW, Leitch AG, McFadden ER Jr, Corey EJ, Austen KF, Drazen JM (1983) Effects of leukotriene D on the airways in asthma. N Engl J Med 308(8):436–439

    Article  CAS  PubMed  Google Scholar 

  52. Davidson AB, Lee TH, Scanlon PD, Solway J, McFadden ER Jr, Ingram RH Jr, Corey EJ, Austen KF, Drazen JM (1987) Bronchoconstrictor effects of leukotriene E4 in normal and asthmatic subjects. Am Rev Respir Dis 135(2):333–337

    CAS  PubMed  Google Scholar 

  53. Arm JP, O’Hickey SP, Hawksworth RJ, Fong CY, Crea AE, Spur BW, Lee TH (1990) Asthmatic airways have a disproportionate hyperresponsiveness to LTE4, as compared with normal airways, but not to LTC4, LTD4, methacholine, and histamine. Am Rev Respir Dis 142(5):1112–1118

    Article  CAS  PubMed  Google Scholar 

  54. Christie PE, Schmitz-Schumann M, Spur BW, Lee TH (1993) Airway responsiveness to leukotriene C4 (LTC4), leukotriene E4 (LTE4) and histamine in aspirin-sensitive asthmatic subjects. Eur Respir J 6(10):1468–1473

    CAS  PubMed  Google Scholar 

  55. Jacques CA, Spur BW, Johnson M, Lee TH (1991) The mechanism of LTE4-induced histamine hyperresponsiveness in guinea-pig tracheal and human bronchial smooth muscle, in vitro. Br J Pharmacol 104(4):859–866. PMCID:PMC1908836

    Google Scholar 

  56. Christie PE, Hawksworth R, Spur BW, Lee TH (1992) Effect of indomethacin on leukotriene-induced histamine hyperresponsiveness in asthmatic subjects. Am Rev Respir Dis 146(6):1506–1510

    Google Scholar 

  57. Beasley RC, Featherstone RL, Church MK, Rafferty P, Varley JG, Harris A, Robinson C, Holgate ST (1989) Effect of a thromboxane receptor antagonist on PGD2- and allergen-induced bronchoconstriction. J Appl Physiol (1985) 66(4):1685–1693

    CAS  Google Scholar 

  58. Jones GL, Saroea HG, Watson RM, O’Byrne PM (1992) Effect of an inhaled thromboxane mimetic (U46619) on airway function in human subjects. Am Rev Respir Dis 145(6):1270–1274

    Article  CAS  PubMed  Google Scholar 

  59. Laitinen LA, Laitinen A, Haahtela T, Vilkka V, Spur BW, Lee TH (1993) Leukotriene E4 and granulocytic infiltration into asthmatic airways. Lancet 341(8851):989–990

    Article  CAS  PubMed  Google Scholar 

  60. Gauvreau GM, Parameswaran KN, Watson RM, O’Byrne PM (2001) Inhaled leukotriene E4, but not leukotriene D4, increased airway inflammatory cells in subjects with atopic asthma. Am J Respir Crit Care Med 164(8 pt 1):1495–1500

    Article  CAS  PubMed  Google Scholar 

  61. Zhu J, Qiu YS, Figueroa DJ, Bandi V, Galczenski H, Hamada K, Guntupalli KK, Evans JF, Jeffery PK (2005) Localization and upregulation of cysteinyl leukotriene-1 receptor in asthmatic bronchial mucosa. Am J Respir Cell Mol Biol 33(6):531–540

    Article  CAS  PubMed  Google Scholar 

  62. Paruchuri S, Jiang Y, Feng C, Francis SA, Plutzky J, Boyce JA (2008) Leukotriene E4 activates peroxisome proliferator-activated receptor gamma and induces prostaglandin D2 generation by human mast cells. J Biol Chem 283(24):16477–16487

    Google Scholar 

  63. Hirai H, Tanaka K, Yoshie O, Ogawa K, Kenmotsu K, Takamori Y, Ichimasa M, Sugamura K, Nakamura M, Takano S et al (2001) Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med 193(2):255–261

    Google Scholar 

  64. Paruchuri S, Tashimo H, Feng C, Maekawa A, Xing W, Jiang Y, Kanaoka Y, Conley P, Boyce JA (2009) Leukotriene E4-induced pulmonary inflammation is mediated by the P2Y12 receptor. J Exp Med 206(11):2543–2555

    Google Scholar 

  65. Nonaka Y, Hiramoto T, Fujita N (2005) Identification of endogenous surrogate ligands for human P2Y12 receptors by in silico and in vitro methods. Biochem Biophys Res Commun 337(1):281–288

    Article  CAS  PubMed  Google Scholar 

  66. Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D et al (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409(6817):202–207

    Article  CAS  PubMed  Google Scholar 

  67. Bautz F, Denzlinger C, Kanz L, Mohle R (2001) Chemotaxis and transendothelial migration of CD34+ hematopoietic progenitor cells induced by the inflammatory mediator leukotriene D4 are mediated by the 7-transmembrane receptor CysLT1. Blood 97(11):3433–3440

    Article  CAS  PubMed  Google Scholar 

  68. Mellor EA, Maekawa A, Austen KF, Boyce JA (2001) Cysteinyl leukotriene receptor 1 is also a pyrimidinergic receptor and is expressed by human mast cells. Proc Natl Acad Sci U S A 98(14):7964–7969

    Google Scholar 

  69. Mellor EA, Frank N, Soler D, Hodge MR, Lora JM, Austen KF, Boyce JA (2003) Expression of the type 2 receptor for cysteinyl leukotrienes (CysLT2R) by human mast cells: functional distinction from CysLT1R. Proc Natl Acad Sci U S A 100(20):11589–11593

    Google Scholar 

  70. Bandeira-Melo C, Woods LJ, Phoofolo M, Weller PF (2002) Intracrine cysteinyl leukotriene receptor-mediated signaling of eosinophil vesicular transport-mediated interleukin-4 secretion. J Exp Med 196(6):841–850

    Google Scholar 

  71. Jiang Y, Borrelli LA, Kanaoka Y, Bacskai BJ, Boyce JA (2007) CysLT2 receptors interact with CysLT1 receptors and down-modulate cysteinyl leukotriene dependent mitogenic responses of mast cells. Blood 110(9):3263–3270

    Google Scholar 

  72. Jiang Y, Kanaoka Y, Feng C, Nocka K, Rao S, Boyce JA (2006) Interleukin 4-dependent mast cell proliferation requires autocrine/intracrine cysteinyl leukotriene-induced signaling. J Immunol 177(5):2755–2759

    Google Scholar 

  73. Mellor EA, Austen KF, Boyce JA (2002) Cysteinyl leukotrienes and uridine diphosphate induce cytokine generation by human mast cells through an interleukin 4-regulated pathway that is inhibited by leukotriene receptor antagonists. J Exp Med 195(5):583–592

    Google Scholar 

  74. Lin DA, Boyce JA (2005) IL-4 regulates MEK expression required for lysophosphatidic acid-mediated chemokine generation by human mast cells. J Immunol 175(8):5430–5438

    Article  CAS  PubMed  Google Scholar 

  75. Thivierge M, Stankova J, Rola-Pleszczynski M (2001) IL-13 and IL-4 up-regulate cysteinyl leukotriene 1 receptor expression in human monocytes and macrophages. J Immunol 167(5):2855–2860

    Article  CAS  PubMed  Google Scholar 

  76. Early SB, Barekzi E, Negri J, Hise K, Borish L, Steinke JW (2007) Concordant modulation of cysteinyl leukotriene receptor expression by IL-4 and IFN-gamma on peripheral immune cells. Am J Respir Cell Mol Biol 36(6):715–720

    Google Scholar 

  77. Jiang Y, Borrelli L, Bacskai BJ, Kanaoka Y, Boyce JA (2009) P2Y6 receptors require an intact cysteinyl leukotriene synthetic and signaling system to induce survival and activation of mast cells. J Immunol 182(2):1129–1137

    Google Scholar 

  78. Mita H, Hasegawa M, Saito H, Akiyama K (2001) Levels of cysteinyl leukotriene receptor mRNA in human peripheral leucocytes: significantly higher expression of cysteinyl leukotriene receptor 2 mRNA in eosinophils. Clin Exp Allergy 31(11):1714–1723

    Article  CAS  PubMed  Google Scholar 

  79. Xue L, Gyles SL, Wettey FR, Gazi L, Townsend E, Hunter MG, Pettipher R (2005) Prostaglandin D2 causes preferential induction of proinflammatory Th2 cytokine production through an action on chemoattractant receptor-like molecule expressed on Th2 cells. J Immunol 175(10):6531–6536

    Google Scholar 

  80. Xue L, Barrow A, Fleming VM, Hunter MG, Ogg G, Klenerman P, Pettipher R (2012) Leukotriene E4 activates human Th2 cells for exaggerated proinflammatory cytokine production in response to prostaglandin D2. J Immunol 188(2):694–702

    Google Scholar 

  81. Mjosberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B, Fokkens WJ, Cupedo T, Spits H (2011) Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol 12(11):1055–1062

    Article  PubMed  Google Scholar 

  82. Xue L, Salimi M, Panse I, Mjosberg JM, McKenzie AN, Spits H, Klenerman P, Ogg G (2013) Prostaglandin D activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on T2 cells. J Allergy Clin Immunol 133:1184–1194

    Article  PubMed  Google Scholar 

  83. Doherty TA, Khorram N, Lund S, Mehta AK, Croft M, Broide DH (2013) Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J Allergy Clin Immunol 132(1):205–213

    Google Scholar 

  84. Hasegawa S, Ichiyama T, Hashimoto K, Suzuki Y, Hirano R, Fukano R, Furukawa S (2010) Functional expression of cysteinyl leukotriene receptors on human platelets. Platelets 21(4):253–259

    Article  CAS  PubMed  Google Scholar 

  85. Cummings HE, Liu T, Feng C, Laidlaw TM, Conley PB, Kanaoka Y, Boyce JA (2013) Cutting edge: leukotriene C4 activates mouse platelets in plasma exclusively through the type 2 cysteinyl leukotriene receptor. J Immunol 191:5807–5810

    Article  CAS  PubMed  Google Scholar 

  86. Parameswaran K, Liang H, Fanat A, Watson R, Snider DP, O’Byrne PM (2004) Role for cysteinyl leukotrienes in allergen-induced change in circulating dendritic cell number in asthma. J Allergy Clin Immunol 114(1):73–79

    Article  CAS  PubMed  Google Scholar 

  87. Thivierge M, Stankova J, Rola-Pleszczynski M (2006) Toll-like receptor agonists differentially regulate cysteinyl-leukotriene receptor 1 expression and function in human dendritic cells. J Allergy Clin Immunol 117(5):1155–1162

    Article  CAS  PubMed  Google Scholar 

  88. Ilarraza R, Wu Y, Adamko DJ (2012) Montelukast inhibits leukotriene stimulation of human dendritic cells in vitro. Int Arch Allergy Immunol 159(4):422–427

    Article  CAS  PubMed  Google Scholar 

  89. Barrett NA, Rahman OM, Fernandez JM, Parsons MW, Xing W, Austen KF, Kanaoka Y (2011) Dectin-2 mediates Th2 immunity through the generation of cysteinyl leukotrienes. J Exp Med 208:593–604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Liu MC, Dube LM, Lancaster J (1996) Acute and chronic effects of a 5-lipoxygenase inhibitor in asthma: a 6-month randomized multicenter trial. Zileuton Study Group. J Allergy Clin Immunol 98(5 pt 1):859–871

    Article  CAS  PubMed  Google Scholar 

  91. Israel E, Rubin P, Kemp JP, Grossman J, Pierson W, Siegel SC, Tinkelman D, Murray JJ, Busse W, Segal AT et al (1993) The effect of inhibition of 5-lipoxygenase by zileuton in mild-to-moderate asthma. Ann Intern Med 119(11):1059–1066

    Article  CAS  PubMed  Google Scholar 

  92. Israel E, Chervinsky PS, Friedman B, Van BJ, Skalky CS, Ghannam AF, Bird SR, Edelman JM (2002) Effects of montelukast and beclomethasone on airway function and asthma control. J Allergy Clin Immunol 110(6):847–854

    Article  CAS  PubMed  Google Scholar 

  93. Fitzgerald DA, Mellis CM (2006) Leukotriene receptor antagonists in virus-induced wheezing: evidence to date. Treat Respir Med 5(6):407–417

    Article  CAS  PubMed  Google Scholar 

  94. Camargo CA Jr, Smithline HA, Malice MP, Green SA, Reiss TF (2003) A randomized controlled trial of intravenous montelukast in acute asthma. Am J Respir Crit Care Med 167(4):528–533

    Article  PubMed  Google Scholar 

  95. Adachi M, Taniguchi H, Tohda Y, Sano Y, Ishine T, Smugar SS, Hisada S (2012) The efficacy and tolerability of intravenous montelukast in acute asthma exacerbations in Japanese patients. J Asthma 49(6):649–656

    Article  CAS  PubMed  Google Scholar 

  96. Camargo CA Jr, Gurner DM, Smithline HA, Chapela R, Fabbri LM, Green SA, Malice MP, Legrand C, Dass SB, Knorr BA et al (2010) A randomized placebo-controlled study of intravenous montelukast for the treatment of acute asthma. J Allergy Clin Immunol 125(2):374–380

    Article  CAS  PubMed  Google Scholar 

  97. Morris CR, Becker AB, Pinieiro A, Massaad R, Green SA, Smugar SS, Gurner DM (2010) A randomized, placebo-controlled study of intravenous montelukast in children with acute asthma. Ann Allergy Asthma Immunol 104(2):161–171

    Article  CAS  PubMed  Google Scholar 

  98. Kikawa Y, Miyanomae T, Inoue Y, Saito M, Nakai A, Shigematsu Y, Hosoi S, Sudo M (1992) Urinary leukotriene E4 after exercise challenge in children with asthma. J Allergy Clin Immunol 89(6):1111–1119

    Article  CAS  PubMed  Google Scholar 

  99. Reiss TF, Hill JB, Harman E, Zhang J, Tanaka WK, Bronsky E, Guerreiro D, Hendeles L (1997) Increased urinary excretion of LTE4 after exercise and attenuation of exercise-induced bronchospasm by montelukast, a cysteinyl leukotriene receptor antagonist. Thorax 52(12):1030–1035

    Google Scholar 

  100. Bancalari L, Conti I, Giannessi D, Lazzerini G, Dente FL, De CR, Paggiaro PL (1999) Early increase in urinary leukotriene E4 (LTE4) is dependent on allergen dose inhaled during bronchial challenge in asthmatic subjects. Allergy 54(12):1278–1285

    Article  CAS  PubMed  Google Scholar 

  101. Rorke S, Jennison S, Jeffs JA, Sampson AP, Arshad H, Holgate ST (2002) Role of cysteinyl leukotrienes in adenosine 5′-monophosphate induced bronchoconstriction in asthma. Thorax 57(4):323–327

    Google Scholar 

  102. Brannan JD, Gulliksson M, Anderson SD, Chew N, Kumlin M (2003) Evidence of mast cell activation and leukotriene release after mannitol inhalation. Eur Respir J 22(3):491–496

    Article  CAS  PubMed  Google Scholar 

  103. Rabinovitch N, Strand M, Stuhlman K, Gelfand EW (2008) Exposure to tobacco smoke increases leukotriene E4-related albuterol usage and response to montelukast. J Allergy Clin Immunol 121(6):1365–1371

    Article  CAS  PubMed  Google Scholar 

  104. Rabinovitch N, Graber NJ, Chinchilli VM, Sorkness CA, Zeiger RS, Strunk RC, Bacharier LB, Martinez FD, Szefler SJ (2010) Urinary leukotriene E4/exhaled nitric oxide ratio and montelukast response in childhood asthma. J Allergy Clin Immunol 126(3):545–551

    Google Scholar 

  105. In KH, Asano K, Beier D, Grobholz J, Finn PW, Silverman EK, Silverman ES, Collins T, Fischer AR, Keith TP et al (1997) Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription. J Clin Invest 99(5):1130–1137

    Google Scholar 

  106. Silverman ES, Drazen JM (1999) The biology of 5-lipoxygenase: function, structure, and regulatory mechanisms. Proc Assoc Am Physicians 111(6):525–536

    Article  CAS  PubMed  Google Scholar 

  107. Silverman E, In KH, Yandava C, Drazen JM (1998) Pharmacogenetics of the 5-lipoxygenase pathway in asthma. Clin Exp Allergy 28(suppl 5):164–170

    Article  CAS  PubMed  Google Scholar 

  108. Whelan GJ, Blake K, Kissoon N, Duckworth LJ, Wang J, Sylvester JE, Lima JJ (2003) Effect of montelukast on time-course of exhaled nitric oxide in asthma: influence of LTC4 synthase A(-444)C polymorphism. Pediatr Pulmonol 36(5):413–420

    Article  PubMed  Google Scholar 

  109. Lima JJ, Zhang S, Grant A, Shao L, Tantisira KG, Allayee H, Wang J, Sylvester J, Holbrook J, Wise R et al (2006) Influence of leukotriene pathway polymorphisms on response to montelukast in asthma. Am J Respir Crit Care Med 173(4):379–385

    Google Scholar 

  110. Laidlaw TM, Boyce JA (2013) Pathogenesis of aspirin-exacerbated respiratory disease and reactions. Immunol Allergy Clin N Am 33(2):195–210

    Google Scholar 

  111. Christie PE, Tagari P, Ford-Hutchinson AW, Charlesson S, Chee P, Arm JP, Lee TH (1991) Urinary leukotriene E4 concentrations increase after aspirin challenge in aspirin-sensitive asthmatic subjects. Am Rev Respir Dis 143(5 pt 1):1025–1029

    Article  CAS  PubMed  Google Scholar 

  112. White A, Ludington E, Mehra P, Stevenson DD, Simon RA (2006) Effect of leukotriene modifier drugs on the safety of oral aspirin challenges. Ann Allergy Asthma Immunol 97(5):688–693

    Article  CAS  PubMed  Google Scholar 

  113. Dahlen B, Nizankowska E, Szczeklik A, Zetterstrom O, Bochenek G, Kumlin M, Mastalerz L, Pinis G, Swanson LJ, Boodhoo TI et al (1998) Benefits from adding the 5-lipoxygenase inhibitor zileuton to conventional therapy in aspirin-intolerant asthmatics. Am J Respir Crit Care Med 157(4 pt 1):1187–1194

    Article  CAS  PubMed  Google Scholar 

  114. Dahlen SE, Malmstrom K, Nizankowska E, Dahlen B, Kuna P, Kowalski M, Lumry WR, Picado C, Stevenson DD, Bousquet J et al (2002) Improvement of aspirin-intolerant asthma by montelukast, a leukotriene antagonist: a randomized, double-blind, placebo-controlled trial. Am J Respir Crit Care Med 165(1):9–14

    Article  PubMed  Google Scholar 

  115. Cowburn AS, Sladek K, Soja J, Adamek L, Nizankowska E, Szczeklik A, Lam BK, Penrose JF, Austen FK, Holgate ST et al (1998) Overexpression of leukotriene C4 synthase in bronchial biopsies from patients with aspirin-intolerant asthma. J Clin Invest 101(4):834–846

    Google Scholar 

  116. Adamjee J, Suh YJ, Park HS, Choi JH, Penrose JF, Lam BK, Austen KF, Cazaly AM, Wilson SJ, Sampson AP (2006) Expression of 5-lipoxygenase and cyclooxygenase pathway enzymes in nasal polyps of patients with aspirin-intolerant asthma. J Pathol 209(3):392–399

    Article  CAS  PubMed  Google Scholar 

  117. Sampson AP, Siddiqui S, Buchanan D, Howarth PH, Holgate ST, Holloway JW, Sayers I (2000) Variant LTC4 synthase allele modifies cysteinyl leukotriene synthesis in eosinophils and predicts clinical response to zafirlukast. Thorax 55(suppl 2):S28–S31

    Google Scholar 

  118. Sanak M, Pierzchalska M, Bazan-Socha S, Szczeklik A (2000) Enhanced expression of the leukotriene C4 synthase due to overactive transcription of an allelic variant associated with aspirin-intolerant asthma. Am J Respir Cell Mol Biol 23(3):290–296

    Article  CAS  PubMed  Google Scholar 

  119. Van SR, Stevenson DD, Baldasaro M, Lam BK, Zhao J, Yoshida S, Yandora C, Drazen JM, Penrose JF (2000) 5′-Flanking region polymorphism of the gene encoding leukotriene C4 synthase does not correlate with the aspirin-intolerant asthma phenotype in the United States. J Allergy Clin Immunol 106(1 pt 1):72–76

    Google Scholar 

  120. Sousa A, Pfister R, Christie PE, Lane SJ, Nasser SM, Schmitz-Schumann M, Lee TH (1997) Enhanced expression of cyclo-oxygenase isoenzyme 2 (COX-2) in asthmatic airways and its cellular distribution in aspirin-sensitive asthma. Thorax 52(11):940–945

    Google Scholar 

  121. Fischer AR, Rosenberg MA, Lilly CM, Callery JC, Rubin P, Cohn J, White MV, Igarashi Y, Kaliner MA, Drazen JM et al (1994) Direct evidence for a role of the mast cell in the nasal response to aspirin in aspirin-sensitive asthma. J Allergy Clin Immunol 94(6 pt 1):1046–1056

    Article  CAS  PubMed  Google Scholar 

  122. Yoshida S, Amayasu H, Sakamoto H, Onuma K, Shoji T, Nakagawa H, Tajima T (1998) Cromolyn sodium prevents bronchoconstriction and urinary LTE4 excretion in aspirin-induced asthma. Ann Allergy Asthma Immunol 80(2):171–176

    Article  CAS  PubMed  Google Scholar 

  123. Liu T, Laidlaw TM, Katz HR, Boyce JA (2013) Prostaglandin E2 deficiency causes a phenotype of aspirin sensitivity that depends on platelets and cysteinyl leukotrienes. Proc Natl Acad Sci U S A 110:16987–16992

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Corrigan CJ, Napoli RL, Meng Q, Fang C, Wu H, Tochiki K, Reay V, Lee TH, Ying S (2012) Reduced expression of the prostaglandin E2 receptor E-prostanoid 2 on bronchial mucosal leukocytes in patients with aspirin-sensitive asthma. J Allergy Clin Immunol 129(6):1636–1646

    Article  CAS  PubMed  Google Scholar 

  125. Sousa AR, Parikh A, Scadding G, Corrigan CJ, Lee TH (2002) Leukotriene-receptor expression on nasal mucosal inflammatory cells in aspirin-sensitive rhinosinusitis. N Engl J Med 347(19):1493–1499

    Article  CAS  PubMed  Google Scholar 

  126. Corrigan C, Mallett K, Ying S, Roberts D, Parikh A, Scadding G, Lee T (2005) Expression of the cysteinyl leukotriene receptors cysLT1 and cysLT2 in aspirin-sensitive and aspirin-tolerant chronic rhinosinusitis. J Allergy Clin Immunol 115(2):316–322

    Article  CAS  PubMed  Google Scholar 

  127. Arm JP, O’Hickey SP, Spur BW, Lee TH (1989) Airway responsiveness to histamine and leukotriene E4 in subjects with aspirin-induced asthma. Am Rev Respir Dis 140(1):148–153

    Article  CAS  PubMed  Google Scholar 

  128. Balzary RW, Cocks TM (2006) Lipopolysaccharide induces epithelium- and prostaglandin E2-dependent relaxation of mouse isolated trachea through activation of cyclooxygenase (COX)-1 and COX-2. J Pharmacol Exp Ther 317(2):806–812

    Article  CAS  PubMed  Google Scholar 

  129. Uematsu S, Matsumoto M, Takeda K, Akira S (2002) Lipopolysaccharide-dependent prostaglandin E2 production is regulated by the glutathione-dependent prostaglandin E2 synthase gene induced by the Toll-like receptor 4/MyD88/NF-IL6 pathway. J Immunol 168(11):5811–5816

    Article  CAS  PubMed  Google Scholar 

  130. Sugimoto Y, Narumiya S (2007) Prostaglandin E receptors. J Biol Chem 282(16):11613–11617

    Article  CAS  PubMed  Google Scholar 

  131. Luo M, Jones SM, Phare SM, Coffey MJ, Peters-Golden M, Brock TG (2004) Protein kinase A inhibits leukotriene synthesis by phosphorylation of 5-lipoxygenase on serine 523. J Biol Chem 279(40):41512–41520

    Article  CAS  PubMed  Google Scholar 

  132. Feng C, Beller EM, Bagga S, Boyce JA (2006) Human mast cells express multiple EP receptors for prostaglandin E2 that differentially modulate activation responses. Blood 107(8):3243–3250

    Google Scholar 

  133. Sestini P, Armetti L, Gambaro G, Pieroni MG, Refini RM, Sala A, Vaghi A, Folco GC, Bianco S, Robuschi M (1996) Inhaled PGE2 prevents aspirin-induced bronchoconstriction and urinary LTE4 excretion in aspirin-sensitive asthma. Am J Respir Crit Care Med 153(2):572–575

    Article  CAS  PubMed  Google Scholar 

  134. Yoshimura T, Yoshikawa M, Otori N, Haruna S, Moriyama H (2008) Correlation between the prostaglandin D2/E2 ratio in nasal polyps and the recalcitrant pathophysiology of chronic rhinosinusitis associated with bronchial asthma. Allergol Int 57(4):429–436

    Article  CAS  PubMed  Google Scholar 

  135. Picado C, Fernandez-Morata JC, Juan M, Roca-Ferrer J, Fuentes M, Xaubet A, Mullol J (1999) Cyclooxygenase-2 mRNA is downexpressed in nasal polyps from aspirin-sensitive asthmatics. Am J Respir Crit Care Med 160(1):291–296

    Article  CAS  PubMed  Google Scholar 

  136. Roca-Ferrer J, Garcia-Garcia FJ, Pereda J, Perez-Gonzalez M, Pujols L, Alobid I, Mullol J, Picado C (2011) Reduced expression of COXs and production of prostaglandin E2 in patients with nasal polyps with or without aspirin-intolerant asthma. J Allergy Clin Immunol 128(1):66–72

    Article  CAS  PubMed  Google Scholar 

  137. Ying S, Meng Q, Scadding G, Parikh A, Corrigan CJ, Lee TH (2006) Aspirin-sensitive rhinosinusitis is associated with reduced E-prostanoid 2 receptor expression on nasal mucosal inflammatory cells. J Allergy Clin Immunol 117(2):312–318

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua A. Boyce M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Fanning, L.B., Boyce, J.A. (2015). Cysteinyl Leukotrienes and Disease. In: Yokomizo, T., Murakami, M. (eds) Bioactive Lipid Mediators. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55669-5_20

Download citation

Publish with us

Policies and ethics