Skip to main content

Eicosanoids and Aortic Aneurysm

  • Chapter
Bioactive Lipid Mediators

Abstract

Some of the derivatives of arachidonic acid, namely, the 5-lipoxygenase (5-LO) metabolites leukotriene B4 (LTB4) and cysteinyl-leukotrienes (CysLTs) as well as the microsomal prostaglandin E2 synthase-1 (mPGES-1) product prostaglandin E2 (PGE2), can act as potent pro-inflammatory mediators in vascular diseases. Abdominal aortic aneurysm (AAA) is a vascular pathology characterized by the infiltration of the media and adventitia by immune cells and the subsequent degradation of the medial elastic lamina layer. In human AAA, cyclooxygenase-2 (COX-2) and 5-LO are abundantly expressed, and the roles of PGE2 and LTs in AAA have recently been a subject of intense investigation. In particular, the PGE2 receptor EP4 has been suggested to promote cytokine production and proteolytic activation, and the inhibition of EP4 signaling attenuates the progression of murine models of AAA. The LTs LTB4 and LTD4 have been shown to stimulate the release of a variety of cytokines and other mediators that can enhance degradation of the extracellular matrix, such as macrophage inflammatory protein-1α and monocyte chemoattractant protein-1. Pharmacological inhibition of these eicosanoids attenuate murine models of AAA. Because no pharmacological therapies are currently available for inhibiting the progression of AAA, regulation of the PGE2 and 5-LO pathways may serve as a new therapeutic strategy for AAA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tang EH et al (2011) Deletion of EP4 on bone marrow-derived cells enhances inflammation and angiotensin II-induced abdominal aortic aneurysm formation. Arterioscler Thromb Vasc Biol 31(2):261–269

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Yokoyama U et al (2012) Inhibition of EP4 signaling attenuates aortic aneurysm formation. PLoS One 7(5):e36724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Cao RY et al (2012) Prostaglandin receptor EP4 in abdominal aortic aneurysms. Am J Pathol 181(1):313–321

    Article  CAS  PubMed  Google Scholar 

  4. Zhao L et al (2004) The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm. Nat Med 10(9):966–973

    Article  CAS  PubMed  Google Scholar 

  5. Cao RY et al (2007) Angiotensin II-induced abdominal aortic aneurysm occurs independently of the 5-lipoxygenase pathway in apolipoprotein E-deficient mice. Prostaglandins Other Lipid Mediat 84(1–2):34–42

    Google Scholar 

  6. Di Gennaro A et al (2010) Increased expression of leukotriene C4 synthase and predominant formation of cysteinyl-leukotrienes in human abdominal aortic aneurysm. Proc Natl Acad Sci U S A 107(49):21093–21097

    Article  PubMed Central  PubMed  Google Scholar 

  7. Ahluwalia N et al (2007) Inhibited aortic aneurysm formation in BLT1-deficient mice. J Immunol 179(1):691–697

    Article  CAS  PubMed  Google Scholar 

  8. Houard X et al (2009) Differential inflammatory activity across human abdominal aortic aneurysms reveals neutrophil-derived leukotriene B4 as a major chemotactic factor released from the intraluminal thrombus. FASEB J 23(5):1376–1383

    Article  CAS  PubMed  Google Scholar 

  9. Kristo F et al (2010) Pharmacological inhibition of BLT1 diminishes early abdominal aneurysm formation. Atherosclerosis 210(1):107–113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Annambhotla S et al (2008) Recent advances in molecular mechanisms of abdominal aortic aneurysm formation. World J Surg 32(6):976–986

    Article  PubMed Central  PubMed  Google Scholar 

  11. Collin J et al (1988) Oxford screening programme for abdominal aortic aneurysm in men aged 65 to 74 years. Lancet 2(8611):613–615

    Article  CAS  PubMed  Google Scholar 

  12. Scott RA, Ashton HA, Kay DN (1991) Abdominal aortic aneurysm in 4237 screened patients: prevalence, development and management over 6 years. Br J Surg 78(9):1122–1125

    Article  CAS  PubMed  Google Scholar 

  13. Ruddy JM, Jones JA, Ikonomidis JS (2013) Pathophysiology of thoracic aortic aneurysm (TAA): is it not one uniform aorta? Role of embryologic origin. Prog Cardiovasc Dis 56(1):68–73

    Article  PubMed Central  PubMed  Google Scholar 

  14. MacSweeney ST, Powell JT, Greenhalgh RM (1994) Pathogenesis of abdominal aortic aneurysm. Br J Surg 81(7):935–941

    Article  CAS  PubMed  Google Scholar 

  15. Guo DC et al (2006) Pathogenesis of thoracic and abdominal aortic aneurysms. Ann N Y Acad Sci 1085:339–352

    Article  CAS  PubMed  Google Scholar 

  16. MacSweeney ST et al (1993) High prevalence of unsuspected abdominal aortic aneurysm in patients with confirmed symptomatic peripheral or cerebral arterial disease. Br J Surg 80(5):582–584

    Article  CAS  PubMed  Google Scholar 

  17. Freestone T et al (1995) Inflammation and matrix metalloproteinases in the enlarging abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol 15(8):1145–1151

    Article  CAS  PubMed  Google Scholar 

  18. Campa JS, Greenhalgh RM, Powell JT (1987) Elastin degradation in abdominal aortic aneurysms. Atherosclerosis 65(1-2):13–21

    Article  CAS  PubMed  Google Scholar 

  19. Longo GM et al (2002) Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest 110(5):625–632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Thompson RW, Parks WC (1996) Role of matrix metalloproteinases in abdominal aortic aneurysms. Ann N Y Acad Sci 800:157–174

    Article  CAS  PubMed  Google Scholar 

  21. Bobryshev YV, Lord RS (2001) Vascular-associated lymphoid tissue (VALT) involvement in aortic aneurysm. Atherosclerosis 154(1):15–21

    Article  CAS  PubMed  Google Scholar 

  22. Walton LJ et al (1999) Inhibition of prostaglandin E2 synthesis in abdominal aortic aneurysms: implications for smooth muscle cell viability, inflammatory processes, and the expansion of abdominal aortic aneurysms. Circulation 100(1):48–54

    Article  CAS  PubMed  Google Scholar 

  23. Treska V et al (2002) Inflammation in the wall of abdominal aortic aneurysm and its role in the symptomatology of aneurysm. Cytokines Cell Mol Ther 7(3):91–97

    Article  PubMed  Google Scholar 

  24. Tieu BC et al (2009) An adventitial IL-6/MCP1 amplification loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice. J Clin Invest 119(12):3637–3651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Holmes DR et al (1995) Medial neovascularization in abdominal aortic aneurysms: a histopathologic marker of aneurysmal degeneration with pathophysiologic implications. J Vasc Surg 21(5):761–771; discussion 771–772

    Article  CAS  PubMed  Google Scholar 

  26. Choke E et al (2006) Abdominal aortic aneurysm rupture is associated with increased medial neovascularization and overexpression of proangiogenic cytokines. Arterioscler Thromb Vasc Biol 26(9):2077–2082

    Article  CAS  PubMed  Google Scholar 

  27. Kaneko H et al (2011) Role of vascular endothelial growth factor-A in development of abdominal aortic aneurysm. Cardiovasc Res 91(2):358–367

    Article  CAS  PubMed  Google Scholar 

  28. Woodward DF, Jones RL, Narumiya S (2011) International Union of Basic and Clinical Pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol Rev 63(3):471–538

    Article  CAS  PubMed  Google Scholar 

  29. Sugimoto Y, Narumiya S (2007) Prostaglandin E receptors. J Biol Chem 282(16):11613–11617

    Article  CAS  PubMed  Google Scholar 

  30. Holmes DR et al (1997) Prostaglandin E2 synthesis and cyclooxygenase expression in abdominal aortic aneurysms. J Vasc Surg 25(5):810–815

    Article  CAS  PubMed  Google Scholar 

  31. Khan KM, Howe LR, Falcone DJ (2004) Extracellular matrix-induced cyclooxygenase-2 regulates macrophage proteinase expression. J Biol Chem 279(21):22039–22046

    Article  CAS  PubMed  Google Scholar 

  32. Corcoran ML et al (1992) Interleukin 4 inhibition of prostaglandin E2 synthesis blocks interstitial collagenase and 92-kDa type IV collagenase/gelatinase production by human monocytes. J Biol Chem 267(1):515–519

    Google Scholar 

  33. King VL et al (2006) Selective cyclooxygenase-2 inhibition with celecoxib decreases angiotensin II-induced abdominal aortic aneurysm formation in mice. Arterioscler Thromb Vasc Biol 26(5):1137–1143

    Article  CAS  PubMed  Google Scholar 

  34. Gitlin JM et al (2007) Genetic deficiency of cyclooxygenase-2 attenuates abdominal aortic aneurysm formation in mice. Cardiovasc Res 73(1):227–236

    Article  CAS  PubMed  Google Scholar 

  35. Samuelsson B, Morgenstern R, Jakobsson PJ (2007) Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacol Rev 59(3):207–224

    Article  CAS  PubMed  Google Scholar 

  36. Wang M et al (2008) Microsomal prostaglandin E synthase-1 deletion suppresses oxidative stress and angiotensin II-induced abdominal aortic aneurysm formation. Circulation 117(10):1302–1309

    Article  CAS  PubMed  Google Scholar 

  37. Cipollone F et al (2005) Association between prostaglandin E receptor subtype EP4 overexpression and unstable phenotype in atherosclerotic plaques in human. Arterioscler Thromb Vasc Biol 25(9):1925–1931

    Article  CAS  PubMed  Google Scholar 

  38. Linton MF, Fazio S (2008) Cyclooxygenase products and atherosclerosis. Drug Discov Today Ther Strateg 5(1):25–36

    Article  PubMed Central  PubMed  Google Scholar 

  39. Yokoyama U et al (2013) The prostanoid EP4 receptor and its signaling pathway. Pharmacol Rev 65(3):1010–1052

    Article  PubMed  Google Scholar 

  40. Takayama K et al (2002) Prostaglandin E2 suppresses chemokine production in human macrophages through the EP4 receptor. J Biol Chem 277(46):44147–44154

    Article  CAS  PubMed  Google Scholar 

  41. Yokoyama U et al (2014) Prostaglandin E2 inhibits elastogenesis in the ductus arteriosus via EP4 signaling. Circulation 129(4):487–496

    Article  CAS  PubMed  Google Scholar 

  42. Nakashima Y, Sueishi K (1992) Alteration of elastic architecture in the lathyritic rat aorta implies the pathogenesis of aortic dissecting aneurysm. Am J Pathol 140(4):959–969

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Sibon I et al (2005) Lysyl oxidase deficiency: a new cause of human arterial dissection. Heart 91(5):e33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Rao R et al (2007) Prostaglandin E2–EP4 receptor promotes endothelial cell migration via ERK activation and angiogenesis in vivo. J Biol Chem 282(23):16959–16968

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Y, Daaka Y (2011) PGE2 promotes angiogenesis through EP4 and PKA Cgamma pathway. Blood 118(19):5355–5364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Yanni SE et al (2009) The role of PGE2 receptor EP4 in pathologic ocular angiogenesis. Invest Ophthalmol Vis Sci 50(11):5479–5486

    Article  PubMed Central  PubMed  Google Scholar 

  47. Kuwano T et al (2004) Cyclooxygenase 2 is a key enzyme for inflammatory cytokine-induced angiogenesis. FASEB J 18(2):300–310

    Article  CAS  PubMed  Google Scholar 

  48. Bayston T et al (2003) Prostaglandin E2 receptors in abdominal aortic aneurysm and human aortic smooth muscle cells. J Vasc Surg 38(2):354–359

    Article  CAS  PubMed  Google Scholar 

  49. Chen BC et al (2006) Peptidoglycan-induced IL-6 production in RAW 264.7 macrophages is mediated by cyclooxygenase-2, PGE2/PGE4 receptors, protein kinase A, I kappa B kinase, and NF-kappa B. J Immunol 177(1):681–693

    Article  CAS  PubMed  Google Scholar 

  50. Ray WA et al (2002) COX-2 selective non-steroidal anti-inflammatory drugs and risk of serious coronary heart disease. Lancet 360(9339):1071–1073

    Article  CAS  PubMed  Google Scholar 

  51. McGettigan P, Henry D (2006) Cardiovascular risk and inhibition of cyclooxygenase: a systematic review of the observational studies of selective and nonselective inhibitors of cyclooxygenase 2. JAMA 296(13):1633–1644

    Article  CAS  PubMed  Google Scholar 

  52. Peters-Golden M, Henderson WR Jr (2007) Leukotrienes. N Engl J Med 357(18):1841–1854

    Article  CAS  PubMed  Google Scholar 

  53. Funk CD (2005) Leukotriene modifiers as potential therapeutics for cardiovascular disease. Nat Rev Drug Discov 4(8):664–672

    Article  CAS  PubMed  Google Scholar 

  54. Spanbroek R et al (2003) Expanding expression of the 5-lipoxygenase pathway within the arterial wall during human atherogenesis. Proc Natl Acad Sci U S A 100(3):1238–1243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Cipollone F et al (2005) Association between 5-lipoxygenase expression and plaque instability in humans. Arterioscler Thromb Vasc Biol 25(8):1665–1670

    Article  CAS  PubMed  Google Scholar 

  56. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294(5548):1871–1875

    Article  CAS  PubMed  Google Scholar 

  57. Vila L (2004) Cyclooxygenase and 5-lipoxygenase pathways in the vessel wall: role in atherosclerosis. Med Res Rev 24(4):399–424

    Article  CAS  PubMed  Google Scholar 

  58. Berman JP, Farkouh ME, Rosenson RS (2013) Emerging anti-inflammatory drugs for atherosclerosis. Expert Opin Emerg Drugs 18(2):193–205

    Article  CAS  PubMed  Google Scholar 

  59. Revermann M et al (2011) A pirinixic acid derivative (LP105) inhibits murine 5-lipoxygenase activity and attenuates vascular remodelling in a murine model of aortic aneurysm. Br J Pharmacol 163(8):1721–1732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Werz O et al (2008) Novel and potent inhibitors of 5-lipoxygenase product synthesis based on the structure of pirinixic acid. J Med Chem 51(17):5449–5453

    Article  CAS  PubMed  Google Scholar 

  61. Koeberle A et al (2008) Pirinixic acid derivatives as novel dual inhibitors of microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase. J Med Chem 51(24):8068–8076

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan (U.Y. and Y.I.), a Grant-in-Aid for Scientific Research on Innovative Areas (U.Y.: 1123116514; YI, 22136009), the fund for Creation of Innovation Centers for Advanced Interdisciplinary Research Areas Program in the Project for Developing Innovation Systems from the Ministry of Education, Culture, Sports, Science and Technology (U.Y.), the Yokohama Foundation for Advanced Medical Science (U.Y.), the Vehicle Racing Commemorative Foundation (U.Y.), and the Takeda Science Foundation (U.Y. and Y.I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utako Yokoyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Yokoyama, U., Ishiwata, R., Ishikawa, Y. (2015). Eicosanoids and Aortic Aneurysm. In: Yokomizo, T., Murakami, M. (eds) Bioactive Lipid Mediators. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55669-5_19

Download citation

Publish with us

Policies and ethics