Skip to main content

Vascular Endothelial S1P2 Receptor Limits Tumor Angiogenesis and Hyperpermeability

  • Chapter
Bioactive Lipid Mediators

Abstract

The lipid mediator sphingosine-1-phosphate (S1P), which is constitutively produced by sphingosine kinase 1 (SphK1) in circulating erythrocytes and vascular endothelial cells, is exported into plasma to regulate vascular formation, vascular barrier function, vascular tonus, and lymphocyte trafficking through G protein-coupled S1P receptors. S1P1, a principal endothelial S1P receptor, has crucial functions in developmental vascular formation and the maintenance of barrier function. The stabilizing action of S1P1 on endothelial intercellular junctions leads to inhibition of sprouting angiogenesis. S1P1 maintains barrier integrity through the activation of the small G protein Rac. Engagement of S1P1 triggers internalization of S1P1 into early endosomes, in which Rac activation occurs. The class IIα isoform of phosphatidylinositol 3-kinase (PI3K-C2α) is required for the internalization of activated S1P1 and Rac activation on early endosomes. Endothelial cells also express S1P2, which is a prototypic G12/13-coupled chemorepellant receptor to activate RhoA with downstream inhibition of Rac and Akt. Endothelial S1P2, together with S1P2 in myeloid cells, mediates inhibition of tumor angiogenesis. This action, in concert with a direct inhibitory effect of S1P2 on proliferation of tumor cells, suppresses tumor growth. Endothelial S1P2 also suppresses disruption of intercellular junctions and resultant fatal vascular hyperpermeability in anaphylaxis, by limiting mediator-induced activation of eNOS through Rho-Rho kinase-PTEN-dependent suppression of Akt. Thus, endothelial S1P1 and S1P2 have specialized, distinct roles in the regulation of angiogenesis and vascular barrier integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

S1P:

Sphingosine-1-phosphate

SphK:

Sphingosine kinase

GPCR:

G protein-coupled receptor

PLC:

Phospholipase C

PI3K:

Phosphatidylinositol 3-kinase

PI3K-C2α:

Class IIα isoform of phosphatidylinositol 3-kinase

PAF:

Platelet-activating factor

eNOS:

Endothelial NO synthase

ERK:

Extracellular signal-regulated kinase

JNK:

Jun N-terminal kinase

MAPK:

Mitogen-activated protein kinase

PTEN:

Phosphatase and Tensin Homolog Deleted from Chromosome 10

HUVECs:

Human umbilical vein endothelial cells

VEGF:

Vascular endothelial growth factor

References

  1. Blaho VA, Hla T (2014) An update on the biology of sphingosine 1-phosphate receptors. J Lipid Res 55:1596–1608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Takuwa Y, Ikeda H, Okamoto Y, Takuwa N, Yoshioka K (2013) Sphingosine-1-phosphate as a mediator involved in development of fibrotic diseases. Biochim Biophys Acta 1831:185–192. doi:10.1016/j.bbalip.2012.06.008

    Article  CAS  PubMed  Google Scholar 

  3. Takuwa Y, Okamoto Y, Yoshioka K, Takuwa N (2012) Sphingosine-1-phosphate signaling in physiology and diseases. Biofactors 38:329–337. doi:10.1002/biof.1030

    Article  CAS  PubMed  Google Scholar 

  4. Cyster JG, Schwab SR (2012) Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol 30:69–94. doi:10.1146/annurev-immunol-020711-075011

    Article  CAS  PubMed  Google Scholar 

  5. Skoura A, Hla T (2009) Lysophospholipid receptors in vertebrate development, physiology, and pathology. J Lipid Res 50(suppl):S293–S298. doi:10.1194/jlr.R800047-JLR200

    PubMed Central  PubMed  Google Scholar 

  6. Kono M, Allende ML, Proia RL (2008) Sphingosine-1-phosphate regulation of mammalian development. Biochim Biophys Acta 1781:435–441. doi:10.1016/j.bbalip.2008.07.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Takuwa Y, Okamoto Y, Yoshioka K, Takuwa N (2008) Sphingosine-1-phosphate signaling and biological activities in the cardiovascular system. Biochim Biophys Acta 1781:483–488

    Article  CAS  PubMed  Google Scholar 

  8. Obinata H, Hla T (2012) Sphingosine 1-phosphate in coagulation and inflammation. Semin Immunopathol 34:73–91. doi:10.1007/s00281-011-0287-3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Takuwa N, Du W, Kaneko E, Okamoto Y, Yoshioka K, Takuwa Y (2011) Tumor-suppressive sphingosine-1-phosphate receptor-2 counteracting tumor-promoting sphingosine-1-phosphate receptor-1 and sphingosine kinase 1: Jekyll Hidden behind Hyde. Am J Cancer Res 1:460–481

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Takuwa Y, Du W, Qi X, Okamoto Y, Takuwa N, Yoshioka K (2010) Roles of sphingosine-1-phosphate signaling in angiogenesis. World J Biol Chem 1:298–306. doi:10.4331/wjbc.v1.i10.298

    Article  PubMed Central  PubMed  Google Scholar 

  11. Zhang H, Desai NN, Olivera A, Seki T, Brooker G, Spiegel S (1991) Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J Cell Biol 114:155–167

    Article  CAS  PubMed  Google Scholar 

  12. Sadahira Y, Ruan F, Hakomori S, Igarashi Y (1992) Sphingosine 1-phosphate, a specific endogenous signaling molecule controlling cell motility and tumor cell invasiveness. Proc Natl Acad Sci U S A 89:9686–9690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hla T, Maciag T (1990) An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors. J Biol Chem 265:9308–9313

    CAS  PubMed  Google Scholar 

  14. Okazaki H, Ishizaka N, Sakurai T, Kurokawa K, Goto K, Kumada M, Takuwa Y (1993) Molecular cloning of a novel putative G protein-coupled receptor expressed in the cardiovascular system. Biochem Biophys Res Commun 190:1104–1109

    Article  CAS  PubMed  Google Scholar 

  15. MacLennan AJ, Browe CS, Gaskin AA, Lado DC, Shaw G (1994) Cloning and characterization of a putative G-protein coupled receptor potentially involved in development. Mol Cell Neurosci 5:201–209

    Article  CAS  PubMed  Google Scholar 

  16. Lee MJ, Van Brocklyn JR, Thangada S, Liu CH, Hand AR, Menzeleev R, Spiegel S, Hla T (1998) Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279:1552–1555

    Article  CAS  PubMed  Google Scholar 

  17. Okamoto H, Takuwa N, Gonda K, Okazaki H, Chang K, Yatomi Y, Shigematsu H, Takuwa Y (1998) EDG1 is a functional sphingosine-1-phosphate receptor that is linked via a Gi/o to multiple signaling pathways, including phospholipase C activation, Ca2+ mobilization, Ras-mitogen-activated protein kinase activation, and adenylate cyclase inhibition. J Biol Chem 273:27104–27110

    Article  CAS  PubMed  Google Scholar 

  18. Gonda K, Okamoto H, Takuwa N, Yatomi Y, Okazaki H, Sakurai T, Kimura S, Sillard R, Harii K, Takuwa Y (1999) The novel sphingosine 1-phosphate receptor AGR16 is coupled via pertussis toxin-sensitive and -insensitive G-proteins to multiple signalling pathways. Biochem J 337:67–75

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Okamoto H, Takuwa N, Yatomi Y, Gonda K, Shigematsu H, Takuwa Y (1999) EDG3 is a functional receptor specific for sphingosine 1-phosphate and sphingosylphosphorylcholine with signaling characteristics distinct from EDG1 and AGR16. Biochem Biophys Res Commun 260:203–208

    Article  CAS  PubMed  Google Scholar 

  20. Sato K, Kon J, Tomura H, Osada M, Murata N, Kuwabara A, Watanabe T, Ohta H, Ui M, Okajima F (1999) Activation of phospholipase C-Ca2+ system by sphingosine 1-phosphate in CHO cells transfected with Edg-3, a putative lipid receptor. FEBS Lett 443:25–30

    Article  CAS  PubMed  Google Scholar 

  21. Chun J, Hla T, Lynch KR, Spiegel S, Moolenaar WH (2010) International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid receptor nomenclature. Pharmacol Rev 62:579–587. doi:10.1124/pr.110.003111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Spiegel S, Milstien S (2007) Functions of the multifaceted family of sphingosine kinases and some close relatives. J Biol Chem 282:2125–2129

    Article  CAS  PubMed  Google Scholar 

  23. Waggoner DW, Xu J, Singh I, Jasinska R, Zhang QX, Brindley DN (1999) Structural organization of mammalian lipid phosphate phosphatases: implications for signal transduction. Biochim Biophys Acta 1439:299–316

    Article  CAS  PubMed  Google Scholar 

  24. Mandala SM, Thornton R, Galve-Roperh I, Poulton S, Peterson C, Olivera A, Bergstrom J, Kurtz MB, Spiegel S (2000) Molecular cloning and characterization of a lipid phosphohydrolase that degrades sphingosine-1-phosphate and induces cell death. Proc Natl Acad Sci U S A 97:7859–7864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Fyrst H, Saba J (2008) Sphingosine-1-phosphate lyase in developmental and disease: sphingolipid metabolism takes flight. Biochim Biophys Acta 1781:448–458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Mizugishi K, Yamashita T, Olivera A, Miller GF, Spiegel S, Proia RL (2005) Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 25:11113–11121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Allende ML, Sasaki T, Kawai H, Olivera A, Mi Y, van Echten-Deckert G, Hajdu R, Rosenbach M, Keohane CA, Mandala S, Spiegel S, Proia RL (2004) Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. J Biol Chem 279:52487–52492

    Article  CAS  PubMed  Google Scholar 

  28. Pappu R, Schwab SR, Cornelissen I, Pereira JP, Regard JB, Xu Y, Camerer E, Zheng YW, Huang Y, Cyster JG, Coughlin SR (2007) Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316:295–298

    Article  CAS  PubMed  Google Scholar 

  29. Camerer E, Regard JB, Cornelissen I, Srinivasan Y, Duong DN, Palmer D, Pham TH, Wong JS, Pappu R, Coughlin SR (2009) Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J Clin Invest 119:1871–1879

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Venkataraman K, Lee YM, Michaud J, Thangada S, Ai Y, Bonkovsky HL, Parikh NS, Habrukowich C, Hla T (2008) Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ Res 102:669–676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Yatomi Y, Igarashi Y, Yang L, Hisano N, Qi R, Asazuma N, Satoh K, Ozaki Y, Kume S (1997) Sphingosine 1-phosphate, a bioactive sphingolipid abundantly stored in platelets, is a normal constituent of human plasma and serum. J Biochem 121:969–973

    Article  CAS  PubMed  Google Scholar 

  32. Kawahara A, Nishi T, Hisano Y, Fukui H, Yamaguchi A, Mochizuki N (2009) The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 323:524–527. doi:10.1126/science.1167449

    Article  CAS  PubMed  Google Scholar 

  33. Kim RH, Takabe K, Milstien S, Spiegel S (2009) Export and functions of sphingosine-1-phosphate. Biochim Biophys Acta 1791:692–696. doi:10.1016/j.bbalip.2009.02.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnström J, Sevvana M, Egerer-Sieber C, Muller YA, Hla T, Nielsen LB, Dahlbäck B (2011) Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci U S A 108:9613–9618. doi:10.1073/pnas.1103187108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Okajima F (2002) Plasma lipoproteins behave as carriers of extracellular sphingosine 1-phosphate: is this an atherogenic mediator or an anti-atherogenic mediator? Biochim Biophys Acta 1582:132–137

    Article  CAS  PubMed  Google Scholar 

  36. Karliner JS (2013) Sphingosine kinase and sphingosine 1-phosphate in the heart: a decade of progress. Biochim Biophys Acta 1831:203–212. doi:10.1016/j.bbalip.2012.06.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Kharel Y, Mathews TP, Gellett AM, Tomsig JL, Kennedy PC, Moyer ML, Macdonald TL, Lynch KR (2011) Sphingosine kinase type 1 inhibition reveals rapid turnover of circulating sphingosine 1-phosphate. Biochem J 440:345–353. doi:10.1042/BJ20110817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Pham TH, Baluk P, Xu Y, Grigorova I, Bankovich AJ, Pappu R, Coughlin SR, McDonald DM, Schwab SR, Cyster JG (2010) Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J Exp Med 207:17–27. doi: 10.1084/jem.20091619

    Google Scholar 

  39. Okamoto H, Takuwa N, Yokomizo T, Sugimoto N, Sakurada S, Shigematsu H, Takuwa Y (2000) Inhibitory regulation of Rac activation, membrane ruffling, and cell migration by the G protein-coupled sphingosine-1-phosphate receptor EDG5 but not EDG1 or EDG3. Mol Cell Biol 20:9247–9261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Takuwa Y, Okamoto H, Takuwa N, Gonda K, Sugimoto N, Sakurada S (2001) Subtype-specific, differential activities of the EDG family receptors for sphingosine-1-phosphate, a novel lysophospholipid mediator. Mol Cell Endocrinol 177:3–11

    Article  CAS  PubMed  Google Scholar 

  41. Takuwa Y, Takuwa N, Sugimoto N (2002) The Edg family G protein-coupled receptors for lysophospholipids: their signaling properties and biological activities. J Biochem 131:767–771

    Article  CAS  PubMed  Google Scholar 

  42. Takuwa Y (2002) Subtype-specific differential regulation of Rho family G proteins and cell migration by the Edg family sphingosine-1-phosphate receptors. Biochim Biophys Acta 1582:112–120

    Article  CAS  PubMed  Google Scholar 

  43. Ishii I, Friedman B, Ye X, Kawamura S, McGiffert C, Contos JJ, Kingsbury MA, Zhang G, Brown JH, Chun J (2001) Selective loss of sphingosine 1-phosphate signaling with no obvious phenotypic abnormality in mice lacking its G protein-coupled receptor, LP(B3)/EDG-3. J Biol Chem 276:33697–33704

    Article  CAS  PubMed  Google Scholar 

  44. Ishii I, Ye X, Friedman B, Kawamura S, Contos JJ, Kingsbury MA, Yang AH, Zhang G, Brown JH, Chun J (2002) Marked perinatal lethality and cellular signaling deficits in mice null for the two sphingosine 1-phosphate (S1P) receptors, S1P(2)/LP(B2)/EDG-5 and S1P(3)/LP(B3)/EDG-3. J Biol Chem 277:25152–25159

    Article  CAS  PubMed  Google Scholar 

  45. Camerer E, Regard JB, Cornelissen I, Srinivasan Y, Duong DN, Palmer D, Pham TH, Wong JS, Pappu R, Coughlin SR (2009) Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J Clin Invest 119:1871–1879

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Olivera A, Eisner C, Kitamura Y, Dillahunt S, Allende L, Tuymetova G, Watford W, Meylan F, Diesner SC, Li L, Schnermann J, Proia RL, Rivera J (2010) Sphingosine kinase 1 and sphingosine-1-phosphate receptor 2 are vital to recovery from anaphylactic shock in mice. J Clin Invest 120:1429–1440. doi:10.1172/JCI40659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Sanna MG, Wang SK, Gonzalez-Cabrera PJ, Don A, Marsolais D, Matheu MP, Wei SH, Parker I, Jo E, Cheng WC, Cahalan MD, Wong CH, Rosen H (2006) Enhancement of capillary leakage and restoration of lymphocyte egress by a chiral S1P1 antagonist in vivo. Nat Chem Biol 2:434–441

    Article  CAS  PubMed  Google Scholar 

  48. Marsolais D, Rosen H (2009) Chemical modulators of sphingosine-1-phosphate receptors as barrier-oriented therapeutic molecules. Nat Rev Drug Discov 8:297–307. doi:10.1038/nrd2356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Brinkmann V, Cyster JG, Hla T (2004) FTY720: sphingosine 1-phosphate receptor-1 in the control of lymphocyte egress and endothelial barrier function. Am J Transplant 4:1019–1025

    Article  CAS  PubMed  Google Scholar 

  50. Lee MJ, Thangada S, Claffey KP, Ancellin N, Liu CH, Kluk M, Volpi M, Sha’afi RI, Hla T (1999) Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell 99:301–312

    Article  CAS  PubMed  Google Scholar 

  51. Cui H, Okamoto Y, Yoshioka K, Du W, Takuwa N, Zhang W, Asano M, Shibamoto T, Takuwa Y (2013) Sphingosine-1-phosphate receptor 2 protects against anaphylactic shock through suppression of endothelial nitric oxide synthase in mice. J Allergy Clin Immunol 132:1205–1214.e9. doi:10.1016/j.jaci.2013.07.026

    Article  CAS  PubMed  Google Scholar 

  52. Oskeritzian CA, Price MM, Hait NC, Kapitonov D, Falanga YT, Morales JK, Ryan JJ, Milstien S, Spiegel S (2010) Essential roles of sphingosine-1-phosphate receptor 2 in human mast cell activation, anaphylaxis, and pulmonary edema. J Exp Med 207:465–474. doi:10.1084/jem.20091513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Cauwels A, Janssen B, Buys E, Sips P, Brouckaert P (2006) Anaphylactic shock depends on PI3K and eNOS-derived NO. J Clin Invest 116:2244–2251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Korhonen H, Fisslthaler B, Moers A, Wirth A, Habermehl D, Wieland T, Schütz G, Wettschureck N, Fleming I, Offermanns S (2009) Anaphylactic shock depends on endothelial Gq/G11. J Exp Med 206:411–420. doi:10.1084/jem.20082150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Thibeault S, Rautureau Y, Oubaha M, Faubert D, Wilkes BC, Delisle C, Gratton JP (2010) S-nitrosylation of beta-catenin by eNOS-derived NO promotes VEGF-induced endothelial cell permeability. Mol Cell 39:468–476. doi:10.1016/j.molcel.2010.07.013

    Article  CAS  PubMed  Google Scholar 

  56. Marín N, Zamorano P, Carrasco R, Mujica P, González FG, Quezada C, Meininger CJ, Boric MP, Durán WN, Sánchez FA (2012) S-Nitrosation of β-catenin and p120 catenin: a novel regulatory mechanism in endothelial hyperpermeability. Circ Res 111:553–563. doi:10.1161/CIRCRESAHA.112.274548

    Article  PubMed Central  PubMed  Google Scholar 

  57. Du W, Takuwa N, Yoshioka K, Okamoto Y, Gonda K, Sugihara K, Fukamizu A, Asano M, Takuwa Y (2010) S1P2, the G protein-coupled receptor for sphingosine-1-phosphate, negatively regulates tumor angiogenesis and tumor growth in vivo in mice. Cancer Res 70:772–781. doi:10.1158/0008-5472.CAN-09-2722

    Article  CAS  PubMed  Google Scholar 

  58. Liu Y, Wada R, Yamashita T, Mi Y, Deng CX, Hobson JP, Rosenfeldt HM, Nava VE, Chae SS, Lee MJ, Liu CH, Hla T, Spiegel S, Proia RL (2000) Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest 106:951–961

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Allende ML, Yamashita T, Proia RL (2003) G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood 102:3665–3667

    Article  CAS  PubMed  Google Scholar 

  60. Ben Shoham A, Malkinson G, Krief S, Shwartz Y, Ely Y, Ferrara N, Yaniv K, Zelzer E (2012) S1P1 inhibits sprouting angiogenesis during vascular development. Development 139:3859–3869

    Article  CAS  PubMed  Google Scholar 

  61. Gaengel K, Niaudet C, Hagikura K, Laviña B, Muhl L, Hofmann JJ, Ebarasi L, Nyström S, Rymo S, Chen LL, Pang MF, Jin Y, Raschperger E, Roswall P, Schulte D, Benedito R, Larsson J, Hellström M, Fuxe J, Uhlén P, Adams R, Jakobsson L, Majumdar A, Vestweber D, Uv A, Betsholtz C (2012) The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2. Dev Cell 23:587–599. doi:10.1016/j.devcel.2012.08.005

    Article  CAS  PubMed  Google Scholar 

  62. Arikawa K, Takuwa N, Yamaguchi H, Sugimoto N, Kitayama J, Nagawa H, Takehara K, Takuwa Y (2003) Ligand-dependent inhibition of B16 melanoma cell migration and invasion via endogenous S1P2 G protein-coupled receptor. Ligand-dependent inhibition of B16 melanoma cell migration and invasion via endogenous S1P2 G protein-coupled receptor. J Biol Chem 278:32841–32851

    Article  CAS  PubMed  Google Scholar 

  63. Yamaguchi H, Kitayama J, Takuwa N, Arikawa K, Inoki I, Takehara K, Nagawa H, Takuwa Y (2003) Sphingosine-1-phosphate receptor subtype-specific positive and negative regulation of Rac and haematogenous metastasis of melanoma cells. Biochem J 374(pt 3):715–722

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Ryu Y, Takuwa N, Sugimoto N, Sakurada S, Usui S, Okamoto H, Matsui O, Takuwa Y (2002) Sphingosine-1-phosphate, a platelet-derived lysophospholipid mediator, negatively regulates cellular Rac activity and cell migration in vascular smooth muscle cells. Circ Res 90:325–332

    Article  CAS  PubMed  Google Scholar 

  65. Inoki I, Takuwa N, Sugimoto N, Yoshioka K, Takata S, Kaneko S, Takuwa Y (2006) Negative regulation of endothelial morphogenesis and angiogenesis by S1P2 receptor. Biochem Biophys Res Commun 2006(346):293–300

    Article  Google Scholar 

  66. Sanchez T, Skoura A, Wu MT, Casserly B, Harrington EO, Hla T (2007) Induction of vascular permeability by the sphingosine-1-phosphate receptor-2 (S1P2R) and its downstream effectors ROCK and PTEN. Arterioscler Thromb Vasc Biol 27:1312–1318

    Article  CAS  PubMed  Google Scholar 

  67. Malchinkhuu E, Sato K, Maehama T, Mogi C, Tomura H, Ishiuchi S, Yoshimoto Y, Kurose H, Okajima F (2008) S1P(2) receptors mediate inhibition of glioma cell migration through Rho signaling pathways independent of PTEN. Biochem Biophys Res Commun 366:963–968

    Article  CAS  PubMed  Google Scholar 

  68. MacLennan AJ, Benner SJ, Andringa A, Chaves AH, Rosing JL, Vesey R, Karpman AM, Cronier SA, Lee N, Erway LC, Miller ML (2006) The S1P2 sphingosine 1-phosphate receptor is essential for auditory and vestibular function. Hear Res 220:38–48

    Article  CAS  PubMed  Google Scholar 

  69. Kono M, Belyantseva IA, Skoura A, Frolenkov GI, Starost MF, Dreier JL, Lidington D, Bolz SS, Friedman TB, Hla T, Proia RL (2007) Deafness and stria vascularis defects in S1P2 receptor-null mice. J Biol Chem 282:10690–10696

    Article  CAS  PubMed  Google Scholar 

  70. Herr DR, Grillet N, Schwander M, Rivera R, Müller U, Chun J (2007) Sphingosine 1-phosphate (S1P) signaling is required for maintenance of hair cells mainly via activation of S1P2. J Neurosci 27:1474–1478

    Article  CAS  PubMed  Google Scholar 

  71. MacLennan AJ, Carney PR, Zhu WJ, Chaves AH, Garcia J, Grimes JR, Anderson KJ, Roper SN, Lee N (2001) An essential role for the H218/AGR16/Edg-5/LP(B2) sphingosine 1-phosphate receptor in neuronal excitability. Eur J Neurosci 14:203–209

    Article  CAS  PubMed  Google Scholar 

  72. Kono M, Mi Y, Liu Y, Sasaki T, Allende ML, Wu YP, Yamashita T, Proia RL (2004) The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J Biol Chem 279:29367–29373

    Article  CAS  PubMed  Google Scholar 

  73. Ohmori T, Yatomi Y, Osada M, Kazama F, Takafuta T, Ikeda H, Ozaki Y (2003) Sphingosine 1-phosphate induces contraction of coronary artery smooth muscle cells via S1P2. Cardiovasc Res 58:170–177

    Article  CAS  PubMed  Google Scholar 

  74. Lorenz JN, Arend LJ, Robitz R, Paul RJ, MacLennan AJ (2007) Vascular dysfunction in S1P2 sphingosine 1-phosphate receptor knockout mice. Am J Physiol Regul Integr Comp Physiol 292:R440–R446

    Article  CAS  PubMed  Google Scholar 

  75. Murakami A, Takasugi H, Ohnuma S, Koide Y, Sakurai A, Takeda S, Hasegawa T, Sasamori J, Konno T, Hayashi K, Watanabe Y, Mori K, Sato Y, Takahashi A, Mochizuki N, Takakura N (2010) Sphingosine 1-phosphate (S1P) regulates vascular contraction via S1P3 receptor: investigation based on a new S1P3 receptor antagonist. Mol Pharmacol 77:704–713. doi:10.1124/mol.109.061481

    Article  CAS  PubMed  Google Scholar 

  76. Noda M, Yasuda-Fukazawa C, Moriishi K, Kato T, Okuda T, Kurokawa K, Takuwa Y (1995) Involvement of rho in GTP gamma S-induced enhancement of phosphorylation of 20 kDa myosin light chain in vascular smooth muscle cells: inhibition of phosphatase activity. FEBS Lett 367:246–250

    Article  CAS  PubMed  Google Scholar 

  77. Takuwa Y (1996) Regulation of vascular smooth muscle contraction. The roles of Ca2+, protein kinase C and myosin light chain phosphatase. Jpn Heart J 37:793–813

    Article  CAS  PubMed  Google Scholar 

  78. Nagumo H, Sasaki Y, Ono Y, Okamoto H, Seto M, Takuwa Y (2000) Rho kinase inhibitor HA-1077 prevents Rho-mediated myosin phosphatase inhibition in smooth muscle cells. Am J Physiol Cell Physiol 278:C57–C65

    CAS  PubMed  Google Scholar 

  79. Sakurada S, Okamoto H, Takuwa N, Sugimoto N, Takuwa Y (2001) Rho activation in excitatory agonist-stimulated vascular smooth muscle. Am J Physiol Cell Physiol 281:C571–C578

    CAS  PubMed  Google Scholar 

  80. Takuwa Y (2003) Regulation of the Rho signaling pathway by excitatory agonists in vascular smooth muscle. Adv Exp Med Biol 538:67–75

    Article  CAS  PubMed  Google Scholar 

  81. Takagi T, Okamoto Y, Tomita S, Sato A, Yamaguchi S, Takuwa Y, Watanabe G (2011) Intraradial administration of fasudil inhibits augmented Rho kinase activity to effectively dilate the spastic radial artery during coronary artery bypass grafting surgery. J Thorac Cardiovasc Surg 142:e59–e65. doi:10.1016/j.jtcvs.2011.01.055

    Article  CAS  PubMed  Google Scholar 

  82. Koyama M, Ito M, Feng J, Seko T, Shiraki K, Takase K, Hartshorne DJ, Nakano T (2000) Phosphorylation of CPI-17, an inhibitory phosphoprotein of smooth muscle myosin phosphatase, by Rho-kinase. FEBS Lett 475:197–200

    Article  CAS  PubMed  Google Scholar 

  83. Posor Y, Eichhorn-Gruenig M, Puchkov D, Schöneberg J, Ullrich A, Lampe A, Müller R, Zarbakhsh S, Gulluni F, Hirsch E, Krauss M, Schultz C, Schmoranzer J, Noé F, Haucke V (2013) Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate. Nature 499:233–237. doi:10.1038/nature12360

    Article  CAS  PubMed  Google Scholar 

  84. Yoshioka K, Yoshida K, Cui H, Wakayama T, Takuwa N, Okamoto Y, Du W, Qi X, Asanuma K, Sugihara K, Aki S, Miyazawa H, Biswas K, Nagakura C, Ueno M, Iseki S, Schwartz RJ, Okamoto H, Sasaki T, Matsui O, Asano M, Adams RH, Takakura N, Takuwa Y (2012) Endothelial PI3K-C2α, a class II PI3K, has an essential role in angiogenesis and vascular barrier function. Nat Med 18:1560–1569. doi:10.1038/nm.2928

    Article  CAS  PubMed  Google Scholar 

  85. Biswas K, Yoshioka K, Asanuma K, Okamoto Y, Takuwa N, Sasaki T, Takuwa Y (2013) Essential role of class II phosphatidylinositol-3-kinase-C2α in sphingosine 1-phosphate receptor-1-mediated signaling and migration in endothelial cells. J Biol Chem 2013(288):2325–2339. doi:10.1074/jbc.M112.409656

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Education, Science, Sports and Culture of Japan, the Japan Society for the Promotion of Science, and grants for Core Research for Evolutional Science and Technology from JST, and IPNU Research Promotion Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoh Takuwa M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Takuwa, N., Okamoto, Y., Yoshioka, K., Takuwa, Y. (2015). Vascular Endothelial S1P2 Receptor Limits Tumor Angiogenesis and Hyperpermeability. In: Yokomizo, T., Murakami, M. (eds) Bioactive Lipid Mediators. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55669-5_17

Download citation

Publish with us

Policies and ethics