Skip to main content

Lipid Mediator LPA-Induced Demyelination and Self-Amplification of LPA Biosynthesis in Chronic Pain Memory Mechanisms

  • Chapter
  • 1329 Accesses

Abstract

Chronic pain is considered to have a memory process because of its long-lasting nature even after the original cause such as nerve injury is resolved. This type contrasts to the cases with acute pain, nociceptive or inflammatory pain, which vanishes without delay after the cessation of stimulation or inhibition of the original inflammation. Lysophosphatidic acid (LPA) was identified to be a key initiator of neuropathic pain, one of the representative types of chronic pain, via activation of multiple machineries. Recent studies revealed that LPA induces LPA biosynthesis through actions of microglia and interleukin-1β. LPA1 and LPA3 receptor-mediated mechanisms are involved in this self-amplification of LPA production. Neuropathic pain is characterized as unique abnormal pain allodynia, in which gentle touch causes intense pain. The functional switch in allodynia is reasonably explained by demyelination, whose underlying mechanisms are also explained as downstream machineries of LPA and its LPA1 receptor signaling. The conversion of tactile to intense pain caused by demyelination may be involved in the long-lasting feed-forward machineries in neuropathic pain. Recent reports describe the importance of endocannabinoids and new arachidonic acid metabolites in the regulation of chronic pain. This chapter also describes the possible relationships of LPA to these additional regulatory mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ATX:

autotaxin

BDNF:

brain-derived neurotrophic factor

CFA:

complete Freund’s adjuvant

cPLA2 :

cytosolic phospholipase A2

DRG:

dorsal root ganglia

ERK:

extracellular signal-regulated kinase

GABA:

gamma-aminobutyric acid

IL-1β:

interleukin-1β

iPLA2 :

calcium-independent PLA2

JNK:

c-Jun N-terminal kinase

LPA:

lysophosphatidic acid

LPC:

lysophosphatidyl choline

MAG:

myelin-associated glycoprotein

MAPK:

mitogen-activated protein kinase

NSAID:

nonsteroidal antiinflammatory drug

ROCK:

Rho-kinase

sEH:

soluble epoxide hydrolase

SP:

substance, P

References

  1. Woolf CJ, Ma Q (2007) Nociceptors—noxious stimulus detectors. Neuron 55(3):353–364. doi:S0896-6273(07)00537-5

    Google Scholar 

  2. Fields HL, Basbaum AI, Heinricher MM (2006) Central nervous system mechanisms of pain modulation. In: McMahon SB, Koltzenburg M (eds) Wall and Melzack’s textbook of pain. Churchill Livingstone, Oxford

    Google Scholar 

  3. Apkarian AV, Baliki MN, Geha PY (2009) Towards a theory of chronic pain. Prog Neurobiol 87(2):81–97. doi:S0301-0082(08)00113-5

    Google Scholar 

  4. Ueda H, Ueda M (2011) Lysophosphatidic acid as initiator of neuropathic pain: biosynthesis and demyelination. J Clin Lipid 6:147–158

    Article  CAS  Google Scholar 

  5. Ueda H (2008) Peripheral mechanisms of neuropathic pain: involvement of lysophosphatidic acid receptor-mediated demyelination. Mol Pain 4:11. doi:1744-8069-4-11

    Google Scholar 

  6. Ueda H (2006) Molecular mechanisms of neuropathic pain–phenotypic switch and initiation mechanisms. Pharmacol Ther 109(1-2):57–77. doi:S0163-7258(05)00134-8

    Google Scholar 

  7. Saade NE, Jabbur SJ (2008) Nociceptive behavior in animal models for peripheral neuropathy: spinal and supraspinal mechanisms. Prog Neurobiol 86(1):22–47. doi:S0301-0082(08)00059-2

    Google Scholar 

  8. Costigan M, Scholz J, Woolf CJ (2009) Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci 32:1–32. doi:10.1146/annurev.neuro.051508.135531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Gillespie CS, Sherman DL, Fleetwood-Walker SM, Cottrell DF, Tait S, Garry EM, Wallace VC, Ure J, Griffiths IR, Smith A, Brophy PJ (2000) Peripheral demyelination and neuropathic pain behavior in periaxin-deficient mice. Neuron 26(2):523–531. doi:S0896-6273(00)81184-8

    Google Scholar 

  10. Ueda H, Matsunaga H, Olaposi OI, Nagai J (2013) Lysophosphatidic acid: chemical signature of neuropathic pain. Biochim Biophys Acta 1831(1):61–73. doi:S1388-1981(12)00185-0

    Google Scholar 

  11. Nagai J, Uchida H, Matsushita Y, Yano R, Ueda M, Niwa M, Aoki J, Chun J, Ueda H (2010) Autotaxin and lysophosphatidic acid 1 receptor-mediated demyelination of dorsal root fibers by sciatic nerve injury and intrathecal lysophosphatidylcholine. Mol Pain 6:78. doi:1744-8069-6-78

    Google Scholar 

  12. Ueda H (2013) Lysophosphatidic acid and neuropathic pain: demyelination and LPA biosynthesis. In: Lysophospholipid receptors: signaling and biochemistry. Wiley, Hoboken, pp 433–449

    Chapter  Google Scholar 

  13. Inoue M, Rashid MH, Fujita R, Contos JJ, Chun J, Ueda H (2004) Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nat Med 10(7):712–718. doi:10.1038/nm1060 nm1060

  14. Xie W, Uchida H, Nagai J, Ueda M, Chun J, Ueda H (2010) Calpain-mediated down-regulation of myelin-associated glycoprotein in lysophosphatidic acid-induced neuropathic pain. J Neurochem 113(4):1002–1011. doi:JNC6664

    Google Scholar 

  15. Ahn DK, Lee SY, Han SR, Ju JS, Yang GY, Lee MK, Youn DH, Bae YC (2009) Intratrigeminal ganglionic injection of LPA causes neuropathic pain-like behavior and demyelination in rats. Pain 146(1–2):114–120. doi:S0304-3959(09)00395-9

    Google Scholar 

  16. O’Connor AB, Schwid SR, Herrmann DN, Markman JD, Dworkin RH (2008) Pain associated with multiple sclerosis: systematic review and proposed classification. Pain 137(1):96–111. doi:S0304-3959(07)00460-5

    Google Scholar 

  17. Scrivani SJ, Mathews ES, Maciewicz RJ (2005) Trigeminal neuralgia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 100(5):527–538. doi:S1079-2104(05)00487-7

    Google Scholar 

  18. Said G (2007) Diabetic neuropathy: a review. Nat Clin Pract Neurol 3(6):331–340. doi:ncpneuro0504

    Google Scholar 

  19. Pentland B, Donald SM (1994) Pain in the Guillain-Barre syndrome: a clinical review. Pain 59(2):159–164. doi:0304-3959(94)90068-X

    Google Scholar 

  20. McDonald CL, Bandtlow C, Reindl M (2011) Targeting the Nogo receptor complex in diseases of the central nervous system. Curr Med Chem 18(2):234–244. doi:BSP/CMC/E-Pub/2011/ 016

    Google Scholar 

  21. Llorens F, Gil V, del Rio JA (2011) Emerging functions of myelin-associated proteins during development, neuronal plasticity, and neurodegeneration. FASEB J 25(2):463–475. doi:fj.10-162792

    Google Scholar 

  22. Ueda H (2011) Lysophosphatidic acid as the initiator of neuropathic pain. Biol Pharm Bull 34(8):1154–1158. doi:JST.JSTAGE/bpb/34.1154

    Google Scholar 

  23. Parkinson DB, Bhaskaran A, Arthur-Farraj P, Noon LA, Woodhoo A, Lloyd AC, Feltri ML, Wrabetz L, Behrens A, Mirsky R, Jessen KR (2008) c-Jun is a negative regulator of myelination. J Cell Biol 181(4): 625–637. doi:jcb.200803013

    Google Scholar 

  24. Aguilera C, Nakagawa K, Sancho R, Chakraborty A, Hendrich B, Behrens A (2011) c-Jun N-terminal phosphorylation antagonises recruitment of the Mbd3/NuRD repressor complex. Nature (Lond) 469(7329):231–235. doi:nature09607

    Google Scholar 

  25. Marinissen MJ, Chiariello M, Tanos T, Bernard O, Narumiya S, Gutkind JS (2004) The small GTP-binding protein RhoA regulates c-jun by a ROCK-JNK signaling axis. Mol Cell 14(1):29–41. doi:S1097276504001534

    Google Scholar 

  26. Das KC, Muniyappa H (2010) c-Jun-NH2 terminal kinase (JNK)-mediates AP-1 activation by thioredoxin: phosphorylation of cJun, JunB, and Fra-1. Mol Cell Biochem 337(1-2):53–63. doi:10.1007/s11010-009-0285-0

    Article  CAS  PubMed  Google Scholar 

  27. Muniyappa H, Das KC (2008) Activation of c-Jun N-terminal kinase (JNK) by widely used specific p38 MAPK inhibitors SB202190 and SB203580: a MLK-3-MKK7-dependent mechanism. Cell Signal 20(4):675–683. doi:S0898-6568(07)00374-9

    Google Scholar 

  28. Tanaka T, Nishimura D, Wu RC, Amano M, Iso T, Kedes L, Nishida H, Kaibuchi K, Hamamori Y (2006) Nuclear Rho kinase, ROCK2, targets p300 acetyltransferase. J Biol Chem 281(22):15320–15329. doi:M510954200

    Google Scholar 

  29. Chen LF, Greene WC (2004) Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol 5(5):392–401 doi:10.1038/nrm1368 nrm1368

  30. Chen Y, Wang H, Yoon SO, Xu X, Hottiger MO, Svaren J, Nave KA, Kim HA, Olson EN, Lu QR (2011) HDAC-mediated deacetylation of NF-kappaB is critical for Schwann cell myelination. Nat Neurosci 14(4):437–441. doi:nn.2780

    Google Scholar 

  31. Svaren J, Meijer D (2008) The molecular machinery of myelin gene transcription in Schwann cells. Glia 56(14):1541–1551. doi:10.1002/glia.20767

    Article  PubMed Central  PubMed  Google Scholar 

  32. Kim HJ, Kim JG, Moon MY, Park SH, Park JB (2014) IkappaB kinase gamma/nuclear factor-kappaB-essential modulator (IKKgamma/NEMO) facilitates RhoA GTPase activation, which, in turn, activates Rho-associated KINASE (ROCK) to phosphorylate IKKbeta in response to transforming growth factor (TGF)-beta 1. J Biol Chem 289(3):1429–1440. doi:M113.520130

    Google Scholar 

  33. Misu K, Yoshihara T, Shikama Y, Awaki E, Yamamoto M, Hattori N, Hirayama M, Takegami T, Nakashima K, Sobue G (2000) An axonal form of Charcot-Marie-Tooth disease showing distinctive features in association with mutations in the peripheral myelin protein zero gene (Thr124Met or Asp75Val). J Neurol Neurosurg Psychiatry 69(6):806–811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Ji RR, Baba H, Brenner GJ, Woolf CJ (1999) Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat Neurosci 2(12):1114–1119. doi:10.1038/16040

    Article  CAS  PubMed  Google Scholar 

  35. Rosen LB, Ginty DD, Weber MJ, Greenberg ME (1994) Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron 12(6):1207–1221. doi:0896-6273(94)90438-3

    Google Scholar 

  36. Matsumoto M, Xie W, Ma L, Ueda H (2008) Pharmacological switch in A beta-fiber stimulation-induced spinal transmission in mice with partial sciatic nerve injury. Mol Pain 4:25. doi:1744-8069-4-25

    Google Scholar 

  37. Fujita R, Kiguchi N, Ueda H (2007) LPA-mediated demyelination in ex vivo culture of dorsal root. Neurochem Int 50(2):351–355. doi:S0197-0186(06)00283-X

    Google Scholar 

  38. Inoue M, Ma L, Aoki J, Ueda H (2008) Simultaneous stimulation of spinal NK1 and NMDA receptors produces LPC which undergoes ATX-mediated conversion to LPA, an initiator of neuropathic pain. J Neurochem 107(6):1556–1565. doi:JNC5725

    Google Scholar 

  39. Durstin M, Durstin S, Molski TF, Becker EL, Sha’afi RI (1994) Cytoplasmic phospholipase A2 translocates to membrane fraction in human neutrophils activated by stimuli that phosphorylate mitogen-activated protein kinase. Proc Natl Acad Sci U S A 91(8):3142–3146

    Google Scholar 

  40. Hirabayashi T, Murayama T, Shimizu T (2004) Regulatory mechanism and physiological role of cytosolic phospholipase A2. Biol Pharm Bull 27(8):1168–1173. doi:JST.JSTAGE/bpb/27.1168

    Google Scholar 

  41. Xing M, Tao L, Insel PA (1997) Role of extracellular signal-regulated kinase and PKC alpha in cytosolic PLA2 activation by bradykinin in MDCK-D1 cells. Am J Physiol 272(4 pt 1):C1380–C1387

    Google Scholar 

  42. Csutora P, Zarayskiy V, Peter K, Monje F, Smani T, Zakharov SI, Litvinov D, Bolotina VM (2006) Activation mechanism for CRAC current and store-operated Ca2+ entry: calcium influx factor and Ca2+-independent phospholipase A2beta-mediated pathway. J Biol Chem 281(46):34926–34935. doi:M606504200

    Google Scholar 

  43. Smani T, Zakharov SI, Csutora P, Leno E, Trepakova ES, Bolotina VM (2004) A novel mechanism for the store-operated calcium influx pathway. Nat Cell Biol 6(2):113–120. doi:10.1038/ncb1089 ncb1089

  44. Ma L, Nagai J, Chun J, Ueda H (2013) An LPA species (18:1 LPA) plays key roles in the self-amplification of spinal LPA production in the peripheral neuropathic pain model. Mol Pain 9(1):29. doi:1744-8069-9-29

    Google Scholar 

  45. Kurusu S, Matsui K, Watanabe T, Tsunou T, Kawaminami M (2008) The cytotoxic effect of bromoenol lactone, a calcium-independent phospholipase A2 inhibitor, on rat cortical neurons in culture. Cell Mol Neurobiol 28(8):1109–1118. doi:10.1007/s10571-008-9287-9

    Google Scholar 

  46. Kishimoto K, Matsumura K, Kataoka Y, Morii H, Watanabe Y (1999) Localization of cytosolic phospholipase A2 messenger RNA mainly in neurons in the rat brain. Neuroscience 92(3):1061–1077. doi:S0306-4522(99)00051-2

    Google Scholar 

  47. Ma L, Uchida H, Nagai J, Inoue M, Aoki J, Ueda H (2010) Evidence for de novo synthesis of lysophosphatidic acid in the spinal cord through phospholipase A2 and autotaxin in nerve injury-induced neuropathic pain. J Pharmacol Exp Ther 333(2):540–546. doi:jpet.109.164830

    Google Scholar 

  48. Milligan ED, Watkins LR (2009) Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci 10(1):23–36. doi:nrn2533

    Google Scholar 

  49. Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10(11):1361–1368. doi:nn1992

    Google Scholar 

  50. Yano R, Ma L, Nagai J, Ueda H (2013) Interleukin-1beta plays key roles in LPA-induced amplification of LPA production in neuropathic pain model. Cell Mol Neurobiol 33(8):1033–1041. doi:10.1007/s10571-013-9970-3

    Article  CAS  PubMed  Google Scholar 

  51. Fujita R, Ma Y, Ueda H (2008) Lysophosphatidic acid-induced membrane ruffling and brain-derived neurotrophic factor gene expression are mediated by ATP release in primary microglia. J Neurochem 107(1):152–160. doi:JNC5599

    Google Scholar 

  52. Rivera C, Voipio J, Thomas-Crusells J, Li H, Emri Z, Sipila S, Payne JA, Minichiello L, Saarma M, Kaila K (2004) Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2. J Neurosci 24(19):4683–4691. doi:10.1523/JNEUROSCI.5265-03.2004 24/19/4683

  53. Rivera C, Li H, Thomas-Crusells J, Lahtinen H, Viitanen T, Nanobashvili A, Kokaia Z, Airaksinen MS, Voipio J, Kaila K, Saarma M (2002) BDNF-induced TrkB activation down-regulates the K+−Cl cotransporter KCC2 and impairs neuronal Cl extrusion. J Cell Biol 159(5):747–752. doi:10.1083/jcb.200209011 jcb.200209011

  54. Ma L, Nagai J, Ueda H (2010) Microglial activation mediates de novo lysophosphatidic acid production in a model of neuropathic pain. J Neurochem 115(3):643–653. doi:JNC6955

    Google Scholar 

  55. Raghavendra V, Tanga F, DeLeo JA (2003) Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J Pharmacol Exp Ther 306(2):624–630. doi:10.1124/jpet.103.052407 jpet.103.052407

  56. Piomelli D, Sasso O (2014) Peripheral gating of pain signals by endogenous lipid mediators. Nat Neurosci 17(2):164–174. doi:nn.3612

    Google Scholar 

  57. Yao B, Mackie K (2009) Endocannabinoid receptor pharmacology. Curr Top Behav Neurosci 1:37–63. doi:10.1007/978-3-540-88955-7_2

    Article  CAS  PubMed  Google Scholar 

  58. Agarwal N, Pacher P, Tegeder I, Amaya F, Constantin CE, Brenner GJ, Rubino T, Michalski CW, Marsicano G, Monory K, Mackie K, Marian C, Batkai S, Parolaro D, Fischer MJ, Reeh P, Kunos G, Kress M, Lutz B, Woolf CJ, Kuner R (2007) Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat Neurosci 10(7):870–879. doi:nn1916

    Google Scholar 

  59. Nagai J, Ueda H (2011) Pre-emptive morphine treatment abolishes nerve injury-induced lysophospholipid synthesis in mass spectrometrical analysis. J Neurochem 118(2):256–265. doi:10.1111/j.1471-4159.2011.07297.x

    Article  CAS  PubMed  Google Scholar 

  60. Morisseau C, Hammock BD (2013) Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health. Annu Rev Pharmacol Toxicol 53:37–58. doi:10.1146/annurev-pharmtox-011112-140244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Wagner K, Inceoglu B, Dong H, Yang J, Hwang SH, Jones P, Morisseau C, Hammock BD (2013) Comparative efficacy of 3 soluble epoxide hydrolase inhibitors in rat neuropathic and inflammatory pain models. Eur J Pharmacol 700(1-3):93–101. doi:S0014-2999(12)01032-1

    Google Scholar 

  62. Inceoglu B, Wagner KM, Yang J, Bettaieb A, Schebb NH, Hwang SH, Morisseau C, Haj FG, Hammock BD (2012) Acute augmentation of epoxygenated fatty acid levels rapidly reduces pain-related behavior in a rat model of type I diabetes. Proc Natl Acad Sci U S A 109(28):11390–11395. doi:1208708109

    Google Scholar 

  63. Sordelli MS, Beltrame JS, Cella M, Gervasi MG, Perez Martinez S, Burdet J, Zotta E, Franchi AM, Ribeiro ML (2012) Interaction between lysophosphatidic acid, prostaglandins and the endocannabinoid system during the window of implantation in the rat uterus. PLoS One 7(9):e46059. doi:10.1371/journal.pone.0046059 PONE-D-12-19475

  64. van Meeteren LA, Ruurs P, Christodoulou E, Goding JW, Takakusa H, Kikuchi K, Perrakis A, Nagano T, Moolenaar WH (2005) Inhibition of autotaxin by lysophosphatidic acid and sphingosine 1-phosphate. J Biol Chem 280(22):21155–21161. doi:M413183200

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ueda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Ueda, H., Uchida, H. (2015). Lipid Mediator LPA-Induced Demyelination and Self-Amplification of LPA Biosynthesis in Chronic Pain Memory Mechanisms. In: Yokomizo, T., Murakami, M. (eds) Bioactive Lipid Mediators. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55669-5_16

Download citation

Publish with us

Policies and ethics