Skip to main content

Zebrafish as a Model Animal for Studying Lysophosphatidic Acid Signaling

  • Chapter
Bioactive Lipid Mediators
  • 1329 Accesses

Abstract

Lysophosphatidic acid (LPA) is a second-generation lysophospholipid mediator that exerts multiple biological functions through its own cognate receptors. LPA is produced by specific enzymatic reactions and activates receptors with similar structures (Edg receptors and P2Y receptors), which results in a variety of actions from embryonic blood vessel formation to development of cancer. LPA-related genes are highly conserved in vertebrates. In the zebrafish genome, three LPA-producing enzymes and nine LPA receptors are present. In vitro experiments have shown that LPA-related genes in zebrafish are conserved biochemically. LPA-related genes can be up- and downregulated by injecting morpholino antisense oligonucleotides (MOs) specific to LPA-related genes or mRNAs in zebrafish embryos. Such tools help to assess the biological function of these genes. For example, knockdown of the LPA-produced enzyme autotaxin (ATX) in zebrafish embryos resulted in malformation of embryonic blood vessel formation, which has also been observed in embryos from ATX-knockout mice. Simultaneous inactivation of multiple genes is possible by injecting more than one MO in zebrafish embryos, which makes it possible to identify the LPA receptors responsible for embryonic blood vessel formation. Gene functions can be also eliminated in zebrafish embryos by pharmacological tools such as enzyme inhibitors or receptor antagonists. Interestingly, overexpression of ATX in zebrafish embryos resulted in duplication of the heart (two-heart phenotype) and the phenotype was canceled by treating the embryos with LPA receptor antagonists. The zebrafish system is a powerful tool not only for identification of gene functions but also for development of drugs against enzymes and receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATX:

Autotaxin

Edg:

Endothelial differentiation gene

hpf:

Hours post fertilization

LPA:

Lysophosphatidic acid

LPC:

Lysophosphatidylcholine

MO:

Morpholino antisense oligonucleotide

S1P:

Sphingosine-1-phosphate

References

  1. Contos JJ, Fukushima N, Weiner JA, Kaushal D, Chun J (2000) Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proc Natl Acad Sci U S A 97:13384–13389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Ye X et al (2005) LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature 435:104–108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Sumida H et al (2010) LPA4 regulates blood and lymphatic vessel formation during mouse embryogenesis. Blood 116:5060–5070

    Article  CAS  PubMed  Google Scholar 

  4. Pasternack SM et al (2008) G protein-coupled receptor P2Y5 and its ligand LPA are involved in maintenance of human hair growth. Nat Genet 40:329–334

    Article  CAS  PubMed  Google Scholar 

  5. Tager AM et al (2008) The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat Med 14:45–54

    Article  CAS  PubMed  Google Scholar 

  6. Lin S et al (2009) The absence of LPA2 attenuates tumor formation in an experimental model of colitis-associated cancer. Gastroenterology 136:1711–1720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Lin S, Lee SJ, Shim H, Chun J, Yun CC (2010) The absence of LPA receptor 2 reduces the tumorigenesis by ApcMin mutation in the intestine. Am J Physiol Gastrointest Liver Physiol 299:G1128–G1138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Deng W et al (2002) Lysophosphatidic acid protects and rescues intestinal epithelial cells from radiation- and chemotherapy-induced apoptosis. Gastroenterology 123:206–216

    Article  CAS  PubMed  Google Scholar 

  9. Aoki J, Inoue A, Okudaira S (2008) Two pathways for lysophosphatidic acid production. Biochim Biophys Acta 1781:513–518

    Article  CAS  PubMed  Google Scholar 

  10. Tanaka M et al (2006) Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid. J Biol Chem 281:25822–25830

    Article  CAS  PubMed  Google Scholar 

  11. van Meeteren LA et al (2006) Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol Cell Biol 26:5015–5022

    Article  PubMed Central  PubMed  Google Scholar 

  12. Kazantseva A et al (2006) Human hair growth deficiency is linked to a genetic defect in the phospholipase gene LIPH. Science 314:982–985

    Article  CAS  PubMed  Google Scholar 

  13. Inoue A et al (2011) LPA-producing enzyme PA-PLA(1)alpha regulates hair follicle development by modulating EGFR signalling. EMBO J 30:4248–4260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Brindley DN, Pilquil C (2009) Lipid phosphate phosphatases and signaling. J Lipid Res 50(suppl):S225–S230

    PubMed Central  PubMed  Google Scholar 

  15. Howe K et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ellertsdottir E et al (2010) Vascular morphogenesis in the zebrafish embryo. Dev Biol 341:56–65

    Article  CAS  PubMed  Google Scholar 

  17. Corey DR, Abrams JM (2001) Morpholino antisense oligonucleotides: tools for investigating vertebrate development. Genome Biol 2: REVIEWS1015

    Google Scholar 

  18. Bedell VM et al (2012) In vivo genome editing using a high-efficiency TALEN system. Nature 491:114–118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hwang WY et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Yukiura H et al (2011) Autotaxin regulates vascular development via multiple lysophosphatidic acid (LPA) receptors in zebrafish. J Biol Chem 286:43972–43983

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Fotopoulou S et al (2010) ATX expression and LPA signalling are vital for the development of the nervous system. Dev Biol 339:451–464

    Article  CAS  PubMed  Google Scholar 

  22. Ruppel KM et al (2005) Essential role for Galpha13 in endothelial cells during embryonic development. Proc Natl Acad Sci U S A 102:8281–8286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kamijo H et al (2011) Impaired vascular remodeling in the yolk sac of embryos deficient in ROCK-I and ROCK-II. Genes Cells 16:1012–1021

    Article  CAS  PubMed  Google Scholar 

  24. Ferry G et al (2007) Functional invalidation of the autotaxin gene by a single amino acid mutation in mouse is lethal. FEBS Lett 581:3572–3578

    Article  CAS  PubMed  Google Scholar 

  25. Yang AH, Ishii I, Chun J (2002) In vivo roles of lysophospholipid receptors revealed by gene targeting studies in mice. Biochim Biophys Acta 1582:197–203

    Article  CAS  PubMed  Google Scholar 

  26. Lin ME, Rivera RR, Chun J (2012) Targeted deletion of LPA5 identifies novel roles for lysophosphatidic acid signaling in development of neuropathic pain. J Biol Chem 287:17608–17617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248:307–318

    Article  CAS  PubMed  Google Scholar 

  28. Yuelling LW, Waggener CT, Afshari FS, Lister JA, Fuss B (2012) Autotaxin/ENPP2 regulates oligodendrocyte differentiation in vivo in the developing zebrafish hindbrain. Glia 60:1605–1618

    Article  PubMed Central  PubMed  Google Scholar 

  29. Lai SL et al (2012) Autotaxin/Lpar3 signaling regulates Kupffer’s vesicle formation and left-right asymmetry in zebrafish. Development 139:4439–4448

    Article  CAS  PubMed  Google Scholar 

  30. Nakanaga K et al (2014) Overexpression of autotaxin, a lysophosphatidic acid-producing enzyme, enhances cardia bifida induced by hypo-sphingosine-1-phosphate signaling in zebrafish embryo. J Biochem 155:235–241

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junken Aoki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Aoki, J., Yukiura, H. (2015). Zebrafish as a Model Animal for Studying Lysophosphatidic Acid Signaling. In: Yokomizo, T., Murakami, M. (eds) Bioactive Lipid Mediators. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55669-5_14

Download citation

Publish with us

Policies and ethics