Skip to main content

Lysophospholipid Acyltransferases

  • Chapter
Book cover Bioactive Lipid Mediators

Abstract

Glycerophospholipids are the main components of cellular membranes. Saturated (also monounsaturated) fatty acids and polyunsaturated fatty acids are usually esterified at the sn-1 and sn-2 position, respectively, in an asymmetrical manner. Using acyl-CoAs as donors, fatty acids of glycerophospholipids are regulated by lysophospholipid acyltransferases in a de novo pathway (Kennedy pathway) and a remodeling pathway (Lands’ cycle) to generate membrane diversity. Both pathways were reported in the 1950s. Fourteen lysophospholipid acyltransferases in the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) and membrane-bound O-acyltransferases (MBOAT) families have been identified to date. In this section, recent studies reporting the cloning and characterization of mammalian lysophospholipid acyltransferases are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shimizu T (2009) Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu Rev Pharmacol 49:123–150

    Article  CAS  Google Scholar 

  2. Shindou H, Shimizu T (2009) Acyl-CoA: lysophospholipid acyltransferases. J Biol Chem 284:1–5

    Article  CAS  PubMed  Google Scholar 

  3. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    Article  PubMed Central  PubMed  Google Scholar 

  4. Yamashita A, Hayashi Y, Nemoto-Sasaki Y, Ito M, Oka S, Tanikawa T, Waku K, Sugiura T (2013) Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Prog Lipid Res 53C:18–81

    Google Scholar 

  5. Kennedy EP, Weiss SB (1956) The function of cytidine coenzymes in the biosynthesis of phospholipids. J Biol Chem 222:193–214

    CAS  PubMed  Google Scholar 

  6. Lands WE (1958) Metabolism of glycerolipides; a comparison of lecithin and triglyceride synthesis. J Biol Chem 231:883–888

    CAS  PubMed  Google Scholar 

  7. Shindou H, Hishikawa D, Harayama T, Eto M, Shimizu T (2013) Generation of membrane diversity by lysophospholipid acyltransferases. J Biochem 154:21–28

    Article  CAS  PubMed  Google Scholar 

  8. Hishikawa D, Hashidate T, Shimizu T, Shindou H (2014) Diversity and function of membrane glycerophospholipids generated by the remodeling pathway in mammalian cells. J Lipid Res 55:799–807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Harayama T, Shindou H, Ogasawara R, Suwabe A, Shimizu T (2008) Identification of a novel noninflammatory biosynthetic pathway of platelet-activating factor. J Biol Chem 283:11097–11106

    Article  CAS  PubMed  Google Scholar 

  10. Shindou H, Eto M, Morimoto R, Shimizu T (2009) Identification of membrane O-acyltransferase family motifs. Biochem Biophys Res Commun 383:320–325

    Article  CAS  PubMed  Google Scholar 

  11. Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ, Uchida A, Cheng JX, Graham M, Christiano R, Frohlich F, Liu X, Buhman KK, Coleman RA, Bewersdorf J, Farese RV Jr, Walther TC (2013) Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell 24:384–399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Agarwal AK, Arioglu E, De Almeida S, Akkoc N, Taylor SI, Bowcock AM, Barnes RI, Garg A (2002) AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet 31:21–23

    Article  CAS  PubMed  Google Scholar 

  13. Yuki K, Shindou H, Hishikawa D, Shimizu T (2009) Characterization of mouse lysophosphatidic acid acyltransferase 3: an enzyme with dual functions in the testis. J Lipid Res 50:860–869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Koeberle A, Shindou H, Harayama T, Yuki K, Shimizu T (2012) Polyunsaturated fatty acids are incorporated into maturating male mouse germ cells by lysophosphatidic acid acyltransferase 3. FASEB J 26:169–180

    Article  CAS  PubMed  Google Scholar 

  15. Koeberle A, Shindou H, Harayama T, Shimizu T (2010) Role of lysophosphatidic acid acyltransferase 3 for the supply of highly polyunsaturated fatty acids in TM4 Sertoli cells. FASEB J 24:4929–4938

    Article  CAS  PubMed  Google Scholar 

  16. Schmidt J, Brown W (2009) Lysophosphatidic acid acyltransferase 3 regulates Golgi complex structure and function. J Cell Biol 186:211–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Eto M, Shindou H, Shimizu T (2014) A novel lysophosphatidic acid acyltransferase enzyme (LPAAT4) with a possible role for incorporating docosahexaenoic acid into brain glycerophospholipids. Biochem Biophys Res Commun 443:718–724

    Article  CAS  PubMed  Google Scholar 

  18. Lu B, Jiang YJ, Zhou Y, Xu FY, Hatch GM, Choy PC (2005) Cloning and characterization of murine 1-acyl-sn-glycerol 3-phosphate acyltransferases and their regulation by PPARalpha in murine heart. Biochem J 385:469–477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Prasad SS, Garg A, Agarwal AK (2011) Enzymatic activities of the human AGPAT isoform 3 and isoform 5: localization of AGPAT5 to mitochondria. J Lipid Res 52:451–462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Nakanishi H, Shindou H, Hishikawa D, Harayama T, Ogasawara R, Suwabe A, Taguchi R, Shimizu T (2006) Cloning and characterization of mouse lung-type acyl-CoA:lysophosphatidylcholine acyltransferase 1 (LPCAT1): expression in alveolar type II cells and possible involvement in surfactant production. J Biol Chem 281:20140–20147

    Article  CAS  PubMed  Google Scholar 

  21. Chen X, Hyatt BA, Mucenski ML, Mason RJ, Shannon JM (2006) Identification and characterization of a lysophosphatidylcholine acyltransferase in alveolar type II cells. Proc Natl Acad Sci U S A 103:11724–11729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Stevens TP, Sinkin RA (2007) Surfactant replacement therapy. Chest 131:1577–1582

    Article  PubMed  Google Scholar 

  23. Bridges JP, Ikegami M, Brilli LL, Chen X, Mason RJ, Shannon JM (2010) LPCAT1 regulates surfactant phospholipid synthesis and is required for transitioning to air breathing in mice. J Clin Invest 120:1736–1748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Harayama T, Eto M, Shindou H, Kita Y, Otsubo E, Hishikawa D, Ishii S, Sakimura K, Mishina M, Shimizu T (2014) Lysophospholipid acyltransferases mediate phosphatidylcholine diversification to achieve the physical properties required in vivo. Cell Metab 20:295–305

    Article  CAS  PubMed  Google Scholar 

  25. Friedman JS, Chang B, Krauth DS, Lopez I, Waseem NH, Hurd RE, Feathers KL, Branham KE, Shaw M, Thomas GE, Brooks MJ, Liu C, Bakeri HA, Campos MM, Maubaret C, Webster AR, Rodriguez IR, Thompson DA, Bhattacharya SS, Koenekoop RK, Heckenlively JR, Swaroop A (2010) Loss of lysophosphatidylcholine acyltransferase 1 leads to photoreceptor degeneration in rd11 mice. Proc Natl Acad Sci U S A 107:15523–15528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Cheng L, Han X, Shi Y (2009) A regulatory role of LPCAT1 in the synthesis of inflammatory lipids, PAF and LPC, in the retina of diabetic mice. Am J Physiol Endocrinol Metab 297:E1276–E1282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Mansilla F, da Costa KA, Wang S, Kruhoffer M, Lewin TM, Orntoft TF, Coleman RA, Birkenkamp-Demtroder K (2009) Lysophosphatidylcholine acyltransferase 1 (LPCAT1) overexpression in human colorectal cancer. J Mol Med (Berl) 87:85–97

    Article  CAS  Google Scholar 

  28. Zhou X, Lawrence TJ, He Z, Pound CR, Mao J, Bigler SA (2012) The expression level of lysophosphatidylcholine acyltransferase 1 (LPCAT1) correlates to the progression of prostate cancer. Exp Mol Pathol 92:105–110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Shindou H, Hishikawa D, Nakanishi H, Harayama T, Ishii S, Taguchi R, Shimizu T (2007) A single enzyme catalyzes both platelet-activating factor production and membrane biogenesis of inflammatory cells. Cloning and characterization of acetyl-CoA:LYSO-PAF acetyltransferase. J Biol Chem 282:6532–6539

    Article  CAS  PubMed  Google Scholar 

  30. Moessinger C, Kuerschner L, Spandl J, Shevchenko A, Thiele C (2011) Human lysophosphatidylcholine acyltransferases 1 and 2 are located in lipid droplets where they catalyze the formation of phosphatidylcholine. J Biol Chem 286:21330–21339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Hishikawa D, Shindou H, Kobayashi S, Nakanishi H, Taguchi R, Shimizu T (2008) Discovery of a lysophospholipid acyltransferase family essential for membrane asymmetry and diversity. Proc Natl Acad Sci U S A 105:2830–2835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Zhao Y, Chen YQ, Bonacci TM, Bredt DS, Li S, Bensch WR, Moller DE, Kowala M, Konrad RJ, Cao G (2008) Identification and characterization of a major liver lysophosphatidylcholine acyltransferase. J Biol Chem 283:8258–8265

    Article  CAS  PubMed  Google Scholar 

  33. Jain S, Zhang X, Khandelwal PJ, Saunders AJ, Cummings BS, Oelkers P (2009) Characterization of human lysophospholipid acyltransferase 3. J Lipid Res 50:1563–1570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Li Z, Ding T, Pan X, Li Y, Li R, Sanders PE, Kuo MS, Hussain MM, Cao G, Jiang XC (2012) Lysophosphatidylcholine acyltransferase 3 knockdown-mediated liver lysophosphatidylcholine accumulation promotes very low density lipoprotein production by enhancing microsomal triglyceride transfer protein expression. J Biol Chem 287:20122–20131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Ariyama H, Kono N, Matsuda S, Inoue T, Arai H (2010) Decrease in membrane phospholipid unsaturation induces unfolded protein response. J Biol Chem 285:22027–22035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Demeure O, Lecerf F, Duby C, Desert C, Ducheix S, Guillou H, Lagarrigue S (2011) Regulation of LPCAT3 by LXR. Gene (Amst) 470:7–11

    Article  CAS  Google Scholar 

  37. Eto M, Shindou H, Koeberle A, Harayama T, Yanagida K, Shimizu T (2012) Lysophosphatidylcholine acyltransferase 3 is the key enzyme for incorporating arachidonic acid into glycerophospholipids during adipocyte differentiation. Int J Mol Sci 13:16267–16280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Tanaka N, Matsubara T, Krausz KW, Patterson AD, Gonzalez FJ (2012) Disruption of phospholipid and bile acid homeostasis in mice with nonalcoholic steatohepatitis. Hepatology 56:118–129

    Article  CAS  PubMed  Google Scholar 

  39. Yamazaki T, Wakabayashi M, Ikeda E, Tanaka S, Sakamoto T, Mitsumoto A, Kudo N, Kawashima Y (2012) Induction of 1-acylglycerophosphocholine acyltransferase genes by fibrates in the liver of rats. Biol Pharm Bull 35:1509–1515

    Article  CAS  PubMed  Google Scholar 

  40. Maurel-Zaffran C, Chauvet S, Jullien N, Miassod R, Pradel J, Aragnol D (1999) nessy, an evolutionary conserved gene controlled by Hox proteins during Drosophila embryogenesis. Mech Dev 86:159–163

    Article  CAS  PubMed  Google Scholar 

  41. Gijón M, Riekhof W, Zarini S, Murphy R, Voelker D (2008) Lysophospholipid acyltransferases and arachidonate recycling in human neutrophils. J Biol Chem 283:30235–30245

    Article  PubMed Central  PubMed  Google Scholar 

  42. Prescott SM, Zimmerman GA, McIntyre TM (1990) Platelet-activating factor. J Biol Chem 265:17381–17384

    CAS  PubMed  Google Scholar 

  43. Ishii S, Shimizu T (2000) Platelet-activating factor (PAF) receptor and genetically engineered PAF receptor mutant mice. Prog Lipid Res 39:41–82

    Article  CAS  PubMed  Google Scholar 

  44. Shindou H, Ishii S, Yamamoto M, Takeda K, Akira S, Shimizu T (2005) Priming effect of lipopolysaccharide on acetyl-coenzyme A: lyso-platelet-activating factor acetyltransferase is MyD88 and TRIF independent. J Immunol 175:1177–1183

    Article  CAS  PubMed  Google Scholar 

  45. Morimoto R, Shindou H, Tarui M, Shimizu T (2014) Rapid production of platelet-activating factor is induced by protein kinase C alpha-mediated phosphorylation of lysophosphatidylcholine acyltransferase 2 protein. J Biol Chem 289:15566–15576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Morimoto R, Shindou H, Oda Y, Shimizu T (2010) Phosphorylation of lysophosphatidylcholine acyltransferase 2 at Ser34 enhances platelet-activating factor production in endotoxin-stimulated macrophages. J Biol Chem 285:29857–29862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Smith WL, Langenbach R (2001) Why there are two cyclooxygenase isozymes. J Clin Invest 107:1491–1495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Tarui M, Shindou H, Kumagai K, Morimoto R, Harayama T, Hashidate T, Kojima H, Okabe T, Nagano T, Nagase T, Shimizu T (2014) Selective inhibitors of a PAF biosynthetic enzyme lysophosphatidylcholine acyltransferase 2. J Lipid Res 55:1386–1396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Okubo M, Yamanaka H, Kobayashi K, Kanda H, Dai Y, Noguchi K (2012) Up-regulation of platelet-activating factor synthases and its receptor in spinal cord contribute to development of neuropathic pain following peripheral nerve injury. Mol Pain 8:8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Kihara Y, Yanagida K, Masago K, Kita Y, Hishikawa D, Shindou H, Ishii S, Shimizu T (2008) Platelet-activating factor production in the spinal cord of experimental allergic encephalomyelitis mice via the group IVA cytosolic phospholipase A2-lyso-PAFAT axis. J Immunol 181:5008–5014

    Article  CAS  PubMed  Google Scholar 

  51. Dauwerse JG, de Vries BB, Wouters CH, Bakker E, Rappold G, Mortier GR, Breuning MH, Peters DJ (2007) A t(4;6)(q12;p23) translocation disrupts a membrane-associated O-acetyl transferase gene (MBOAT1) in a patient with a novel brachydactyly-syndactyly syndrome. Eur J Hum Genet 15:743–751

    Article  CAS  PubMed  Google Scholar 

  52. Cao J, Shan D, Revett T, Li D, Wu L, Liu W, Tobin JF, Gimeno RE (2008) Molecular identification of a novel mammalian brain isoform of acyl-CoA:lysophospholipid acyltransferase with prominent ethanolamine lysophospholipid acylating activity, LPEAT2. J Biol Chem 283:19049–19057

    Article  CAS  PubMed  Google Scholar 

  53. Yabuuchi H, O’Brien JS (1968) Positional distribution of fatty acids in glycerophosphatides of bovine gray matter. J Lipid Res 9:65–67

    CAS  PubMed  Google Scholar 

  54. Matsubara T, Tanaka N, Sato M, Kang DW, Krausz KW, Flanders KC, Ikeda K, Luecke H, Wakefield LM, Gonzalez FJ (2012) TGF-beta-SMAD3 signaling mediates hepatic bile acid and phospholipid metabolism following lithocholic acid-induced liver injury. J Lipid Res 53:2698–2707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Lee HC, Inoue T, Imae R, Kono N, Shirae S, Matsuda S, Gengyo-Ando K, Mitani S, Arai H (2008) Caenorhabditis elegans mboa-7, a member of the MBOAT family, is required for selective incorporation of polyunsaturated fatty acids into phosphatidylinositol. Mol Biol Cell 19:1174–1184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Lee HC, Inoue T, Sasaki J, Kubo T, Matsuda S, Nakasaki Y, Hattori M, Tanaka F, Udagawa O, Kono N, Itoh T, Ogiso H, Taguchi R, Arita M, Sasaki T, Arai H (2012) LPIAT1 regulates arachidonic acid content in phosphatidylinositol and is required for cortical lamination in mice. Mol Biol Cell 23:4689–4700

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Anderson KE, Kielkowska A, Durrant TN, Juvin V, Clark J, Stephens LR, Hawkins PT (2013) Lysophosphatidylinositol-acyltransferase-1 (LPIAT1) is required to maintain physiological levels of PtdIns and PtdInsP2 in the mouse. PLoS One 8:e58425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Cao J, Liu Y, Lockwood J, Burn P, Shi Y (2004) A novel cardiolipin-remodeling pathway revealed by a gene encoding an endoplasmic reticulum-associated acyl-CoA:lysocardiolipin acyltransferase (ALCAT1) in mouse. J Biol Chem 279:31727–31734

    Article  CAS  PubMed  Google Scholar 

  59. Imae R, Inoue T, Nakasaki Y, Uchida Y, Ohba Y, Kono N, Nakanishi H, Sasaki T, Mitani S, Arai H (2012) LYCAT, a homologue of C. elegans acl-8, acl-9, and acl-10, determines the fatty acid composition of phosphatidylinositol in mice. J Lipid Res 53:335–347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Yang Y, Cao J, Shi Y (2004) Identification and characterization of a gene encoding human LPGAT1, an endoplasmic reticulum-associated lysophosphatidylglycerol acyltransferase. J Biol Chem 279:55866–55874

    Article  CAS  PubMed  Google Scholar 

  61. Zhao Y, Chen YQ, Li S, Konrad RJ, Cao G (2009) The microsomal cardiolipin remodeling enzyme acyl-CoA lysocardiolipin acyltransferase is an acyltransferase of multiple anionic lysophospholipids. J Lipid Res 50:945–956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Li J, Romestaing C, Han X, Li Y, Hao X, Wu Y, Sun C, Liu X, Jefferson LS, Xiong J, Lanoue KF, Chang Z, Lynch CJ, Wang H, Shi Y (2010) Cardiolipin remodeling by ALCAT1 links oxidative stress and mitochondrial dysfunction to obesity. Cell Metab 12:154–165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Liu X, Ye B, Miller S, Yuan H, Zhang H, Tian L, Nie J, Imae R, Arai H, Li Y, Cheng Z, Shi Y (2012) Ablation of ALCAT1 mitigates hypertrophic cardiomyopathy through effects on oxidative stress and mitophagy. Mol Cell Biol 32:4493–4504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Takao Shimizu and all members of Shimizu’s laboratory (National Center for Global Health and Medicine, and The University of Tokyo) for their valuable suggestions.

Note

This work is supported by CREST, the Japan Science and Technology Agency (H.S.), a grant-in-aid for Scientific Research (C) (H.S.), and a Grant-in-Aid for Young Scientists (B) (D.H.) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Shindou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Shindou, H., Harayama, T., Hishikawa, D. (2015). Lysophospholipid Acyltransferases. In: Yokomizo, T., Murakami, M. (eds) Bioactive Lipid Mediators. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55669-5_1

Download citation

Publish with us

Policies and ethics