Skip to main content

Macrophage Therapy for Liver Fibrosis and Regeneration

  • Chapter

Abstract

The liver has a population of resident macrophages termed Kupffer cells that are phagocytic and aid filtration of the portal blood. Following liver injury both the resident macrophages and circulating monocytes influence both liver regeneration and liver fibrosis. Kupffer cells can stimulate hepatocyte proliferation via the secretion of IL-6; macrophages stimulate a ductular proliferation via TWEAK secretion and also secrete Wnts which stimulate liver regeneration. Macrophages can both promote fibrosis and help resolve fibrosis depending upon the phase of liver injury.

We have been developing macrophage therapy for liver fibrosis and found that injected mature macrophages promote scar resolution in mouse models of liver fibrosis via a number of direct mechanism such as MMP expression but also in indirectly via the expression of chemokines which aid the recruitment of inflammatory cells to the scar area and promote scar resolution. Based on these basic research results, we are planning human studies of autologous macrophage therapy for liver cirrhosis in the near future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hansel MC et al. The history and use of human hepatocytes for the treatment of liver diseases: the first 100 patients. Curr Protoc Toxicol. 2014;62:14.12.1–14.12.23.

    Article  Google Scholar 

  2. Gupta S. Hepatocyte transplantation. J Gastroenterol Hepatol. 2002;17 Suppl 3:S287–93.

    Article  PubMed  Google Scholar 

  3. Forbes SJ, Rosenthal N. Preparing the ground for tissue regeneration: from mechanism to therapy. Nat Med. 2014;20:857–69.

    Article  CAS  PubMed  Google Scholar 

  4. Furuyama K et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet. 2011;43:34–41.

    Article  CAS  PubMed  Google Scholar 

  5. Sackett SD et al. Foxl1 is a marker of bipotential hepatic progenitor cells in mice. Hepatology. 2009;49:920–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Espanol-Suner R et al. Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice. Gastroenterology. 2012;143:1564–75.

    Article  PubMed  Google Scholar 

  7. Yanger K et al. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell. 2014;15:340–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Tarlow BD et al. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell. 2014;15:605–18.

    Article  CAS  PubMed  Google Scholar 

  9. Lorenzini S et al. Characterisation of a stereotypical cellular and extracellular adult liver progenitor cell niche in rodents and diseased human liver. Gut. 2010;59:645–54.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Kallis YN et al. Remodelling of extracellular matrix is a requirement for the hepatic prosgenitor cell response. Gut. 2011;60:525–33.

    Google Scholar 

  11. Hsieh WC et al. Galectin-3 regulates hepatic progenitor cell expansion during liver injury. Gut. 2015;64:312–21.

    Article  CAS  PubMed  Google Scholar 

  12. Tsuchiya A et al. Polysialic acid/neural cell adhesion molecule modulates the formation of ductular reactions in liver injury. Hepatology. 2014;60:1727–40.

    Article  CAS  PubMed  Google Scholar 

  13. Boulter L et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat Med. 2012;18:572–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Terai S et al. Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells. 2006;24:2292–8.

    Article  CAS  PubMed  Google Scholar 

  15. Terai S et al. Status and prospects of liver cirrhosis treatment by using bone marrow-derived cells and mesenchymal cells. Tissue Eng Part B Rev. 2014;20:206–10.

    Article  PubMed  Google Scholar 

  16. Moore JK et al. Systematic review: the effects of autologous stem cell therapy for patients with liver disease. Aliment Pharmacol Ther. 2014;39:673–85.

    Article  CAS  PubMed  Google Scholar 

  17. Gibbons MA et al. Ly6Chi monocytes direct alternatively activated profibrotic macrophage regulation of lung fibrosis. Am J Respir Crit Care Med. 2011;184:569–81.

    Article  CAS  PubMed  Google Scholar 

  18. Duffield JS et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest. 2005;115:56–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ramachandran P et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci U S A. 2012;109:E3186–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Fallowfield JA et al. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol. 2007;178:5288–95.

    Article  CAS  PubMed  Google Scholar 

  21. Russo FP et al. The bone marrow functionally contributes to liver fibrosis. Gastroenterology. 2006;130:1807–21.

    Article  PubMed  Google Scholar 

  22. Thomas JA et al. Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology. 2011;53:2003–15.

    Article  CAS  PubMed  Google Scholar 

  23. Williams MJ et al. Links between hepatic fibrosis, ductular reaction, and progenitor cell expansion. Gastroenterology. 2014;146:349–56.

    Article  PubMed  Google Scholar 

  24. Bird TG et al. Bone marrow injection stimulates hepatic ductular reactions in the absence of injury via macrophage-mediated TWEAK signaling. Proc Natl Acad Sci U S A. 2013;110:6542–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Boulter L et al. Differentiation of progenitors in the liver: a matter of local choice. J Clin Invest. 2013;123:1867–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart J. Forbes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Tsuchiya, A., Forbes, S.J. (2016). Macrophage Therapy for Liver Fibrosis and Regeneration. In: Terai, S., Suda, T. (eds) Gene Therapy and Cell Therapy Through the Liver. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55666-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55666-4_2

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55665-7

  • Online ISBN: 978-4-431-55666-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics