Skip to main content

Liver-Targeted Gene and Cell Therapies: An Overview

  • Chapter
Gene Therapy and Cell Therapy Through the Liver

Abstract

Until very recently, management of several liver malignancies, viral hepatitis, hepatic cirrhosis, and hereditary metabolic diseases remained unsatisfactory, and thus, efficient therapeutic approaches have always been in need. In parallel with recent advances in molecular biology and recombinant DNA technologies, research in liver diseases and the quest for molecular insights of disease pathology have witnessed remarkable progression, and early and specific detection of genetic, infectious, and malignant liver diseases has become feasible like never before. Several molecular approaches combining genetics, biology, chemistry, and computer sciences have been introduced, and in particular, gene- and cell-based therapies opened up new opportunities that step out beyond classical pharmacology. Gene therapy emerged as promising therapeutic strategy aiming to introduce genetic material into cells to generate curative effects. Gene therapy comprises various methods of gene delivery and innovative overexpression and silencing designs for specific therapeutic needs (Kay MA, Nat Rev Genet 12:316–328, 2011). Cell-based therapies, on the other hand, aim to use biologically active living cells instead of DNA or RNA as treatment modality. Several extracorporeal and implantable cell therapies have been developed, such as bioartificial liver (Baquerizo A, Mhoyan A, Kearns-Jonker M, Arnaout WS, Shackleton C, Busuttil RW et al, Transplantation 67:5–18, 1999) for short-term treatment and liver cell transplantation for permanent liver replacement (Fox IJ, Chowdhury JR, Kaufman SS, Goertzen TC, Chowdhury NR, Warkentin PI et al, N Engl J Med 338:1422–1426, 1998). In this chapter, we will briefly discuss the current theories and potential applications of gene- and cell-based therapies for the treatment and/or prevention of various liver diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kay MA. State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet. 2011;12:316–28.

    Article  CAS  PubMed  Google Scholar 

  2. Baquerizo A, Mhoyan A, Kearns-Jonker M, Arnaout WS, Shackleton C, Busuttil RW, et al. Characterization of human xenoreactive antibodies in liver failure patients exposed to pig hepatocytes after bioartificial liver treatment: an ex vivo model of pig to human xenotransplantation. Transplantation. 1999;67:5–18.

    Article  CAS  PubMed  Google Scholar 

  3. Fox IJ, Chowdhury JR, Kaufman SS, Goertzen TC, Chowdhury NR, Warkentin PI, et al. Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. N Engl J Med. 1998;338:1422–6.

    Article  CAS  PubMed  Google Scholar 

  4. Mailliard ME, Gollan JL. Metabolic liver disease in the young adult. Best Pract Res Clin Gastroenterol. 2003;17:307–22.

    Article  PubMed  Google Scholar 

  5. Kmiec Z. Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol. 2001;161(III–XIII):1–151.

    Article  Google Scholar 

  6. Wiethoff CM, Middaugh CR. Barriers to nonviral gene delivery. J Pharm Sci. 2003;92:203–17.

    Article  CAS  PubMed  Google Scholar 

  7. Kamimura K, Suda T, Zhang G, Liu D. Advances in gene delivery systems. Pharm Med. 2011;25:293–306.

    Article  Google Scholar 

  8. Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2012 – an update. J Gene Med. 2013;15:65–77.

    Article  CAS  PubMed  Google Scholar 

  9. van der Laan LJ, Wang Y, Tilanus HW, Janssen HL, Pan Q. AAV-mediated gene therapy for liver diseases: the prime candidate for clinical application? Expert Opin Biol Ther. 2011;11:315–27.

    Article  PubMed  Google Scholar 

  10. Guo X, Huang L. Recent advances in nonviral vectors for gene delivery. Acc Chem Res. 2012;45:971–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kamimura K, Liu D. Physical approaches for nucleic acid delivery to liver. AAPS J. 2008;10:589–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Kamimura K, Suda T, Xu W, Zhang G, Liu D. Image-guided, lobe-specific hydrodynamic gene delivery to swine liver. Mol Ther. 2009;17:491–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Matrai J, Chuah MK, VandenDriessche T. Preclinical and clinical progress in hemophilia gene therapy. Curr Opin Hematol. 2010;17:387–92.

    Article  CAS  PubMed  Google Scholar 

  14. Held PK, Olivares EC, Aguilar CP, Finegold M, Calos MP, Grompe M. In vivo correction of murine hereditary tyrosinemia type I by phiC31 integrase-mediated gene delivery. Mol Ther. 2005;11:399–408.

    Article  CAS  PubMed  Google Scholar 

  15. Zender L, Köck R, Eckhard M, Frericks B, Gösling T, Gebhardt T, et al. Gene therapy by intrahepatic and intratumoral trafficking of p53-VP22 induces regression of liver tumors. Gastroenterology. 2002;123:608–18.

    Article  CAS  PubMed  Google Scholar 

  16. Kim H, Kim JS. A guide to genome engineering with programmable nucleases. Nat Rev Genet. 2014;15:321–34.

    Article  CAS  PubMed  Google Scholar 

  17. Kren BT, Parashar B, Bandyopadhyay P, Chowdhury NR, Chowdhury JR, Steer CJ. Correction of the UDP-glucuronosyltransferase gene defect in the gunn rat model of crigler-najjar syndrome type I with a chimeric oligonucleotide. Proc Natl Acad Sci U S A. 1999;96:10349–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Tagalakis AD, Graham IR, Riddell DR, Dickson JG, Owen JS. Gene correction of the apolipoprotein (Apo) E2 phenotype to wild-type ApoE3 by in situ chimeraplasty. J Biol Chem. 2001;276:13226–30.

    Article  CAS  PubMed  Google Scholar 

  19. Duarte S, Carle G, Faneca H, de Lima MC, Pierrefite-Carle V. Suicide gene therapy in cancer: where do we stand now? Cancer Lett. 2012;324:160–70.

    Article  CAS  PubMed  Google Scholar 

  20. Donnelly OG, Errington-Mais F, Prestwich R, Harrington K, Pandha H, Vile R, et al. Recent clinical experience with oncolytic viruses. Curr Pharm Biotechnol. 2012;13:1834–41.

    Article  CAS  PubMed  Google Scholar 

  21. Ishikawa H, Nakao K, Matsumoto K, Ichikawa T, Hamasaki K, Nakata K, et al. Antiangiogenic gene therapy for hepatocellular carcinoma using angiostatin gene. Hepatology. 2003;37:696–704.

    Article  CAS  PubMed  Google Scholar 

  22. Qian C, Liu XY, Prieto J. Therapy of cancer by cytokines mediated by gene therapy approach. Cell Res. 2006;16:182–8.

    Article  CAS  PubMed  Google Scholar 

  23. Hanke P, Serwe M, Dombrowski F, Sauerbruch T, Caselmann WH. DNA vaccination with AFP-encoding plasmid DNA prevents growth of subcutaneous AFP-expressing tumors and does not interfere with liver regeneration in mice. Cancer Gene Ther. 2002;9:346–55.

    Article  CAS  PubMed  Google Scholar 

  24. Latimer B, Toporovski R, Yan J, Pankhong P, Khan A, Sardesai N, et al. A polyantigenic genotype 1a/1b consensus hepatitis C virus DNA vaccine induces broadly reactive HCV-specific cellular immune responses in both mice and non-human primates et al., (VAC7P.985). J Immunol. 2014;192(1 Supplement):141.30.

    Google Scholar 

  25. Muotri AR, da Veiga Pereira L, dos Reis Vasques L, Menck CF. Ribozymes and the anti-gene therapy: how a catalytic RNA can be used to inhibit gene function. Gene. 1999;237:303–10.

    Article  CAS  PubMed  Google Scholar 

  26. Weinberg MS, Ely A, Passman M, Mufamadi SM, Arbuthnot P. Effective anti-hepatitis B virus hammerhead ribozymes derived from multimeric precursors. Oligonucleotides. 2007;17:104–12.

    Article  CAS  PubMed  Google Scholar 

  27. Levesque MV, Lévesque D, Brière FP, Perreault JP. Investigating a new generation of ribozymes in order to target HCV. PLoS One. 2010;5:e9627. doi:10.1371/journal.pone.0009627.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Lin RX, Wang ZY, Zhang N, Tuo CW, Liang QD, Sun YN, et al. Inhibition of hepatocellular carcinoma growth by antisense oligonucleotides to type I insulin-like growth factor receptor in vitro and in an orthotopic model. Hepatol Res. 2007;37:366–75.

    Article  CAS  PubMed  Google Scholar 

  29. Bogorad RL, Yin H, Zeigerer A, Nonaka H, Ruda VM, Zerial M, et al. Nanoparticle-formulated siRNA targeting integrins inhibits hepatocellular carcinoma progression in mice. Nat Commun. 2014;5:3869. doi:10.1038/ncomms4869.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Giladi H, Ketzinel-Gilad M, Rivkin L, Felig Y, Nussbaum O, Galun E. Small interfering RNA inhibits hepatitis B virus replication in mice. Mol Ther. 2003;8:769–76.

    Article  CAS  PubMed  Google Scholar 

  31. El-Awady MK, El-Din NG, El-Garf WT, Youssef SS, Omran MH, El-Abd J, et al. Antisense oligonucleotide inhibition of hepatitis C virus genotype 4 replication in HepG2 cells. Cancer Cell Int. 2006;6(18):1–9.

    Google Scholar 

  32. Herskowitz I. Functional inactivation of genes by dominant negative mutations. Nature. 1987;329:219–22.

    Article  CAS  PubMed  Google Scholar 

  33. Scaglioni P, Melegari M, Takahashi M, Chowdhury JR, Wands J. Use of dominant negative mutants of the hepadnaviral core protein as antiviral agents. Hepatology. 1996;24:1010–7.

    Article  CAS  PubMed  Google Scholar 

  34. von Weizsacker F, Wieland S, Blum HE. Inhibition of viral replication by genetically engineered mutants of the duck hepatitis B virus core protein. Hepatology. 1996;24:294–9.

    Article  Google Scholar 

  35. Ryckman FC, Bucuvalas JC, Nathan J, Alonso M, Tiao G, Balistreri WF. Outcomes following liver transplantation. Semin Pediatr Surg. 2008;17:123–30.

    Article  PubMed  Google Scholar 

  36. Stoick-Cooper CL, Moon RT, Weidinger G. Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine. Genes Dev. 2007;21:1292–315.

    Article  CAS  PubMed  Google Scholar 

  37. Lanthier N, Rubbia-Brandt L, Spahr L. Liver progenitor cells and therapeutic potential of stem cells in human chronic liver diseases. Acta Gastroenterol Belg. 2013;76:3–9.

    PubMed  Google Scholar 

  38. Gilchrist ES, Plevris JN. Bone marrow-derived stem cells in liver repair: 10 years down the line. Liver Transpl. 2010;16:118–29.

    Article  PubMed  Google Scholar 

  39. Krebs CN, Vacanti JP. Cellular transplants for liver diseases. In: Halberstadt C, Emerich DF, editors. Cellular transplantation: from laboratory to clinic. Burlington: Academic; 2011. p. 215–40.

    Google Scholar 

  40. Yu Y, Fisher JE, Lillegard JB, Rodysill B, Amiot B, Nyberg SL. Cell therapies for liver diseases. Liver Transpl. 2012;18:9–21.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Dhawan A, Puppi J, Hughes RD, Mitry RR. Human hepatocyte transplantation: current experience and future challenges. Nat Rev Gastroenterol Hepatol. 2010;7:288–98.

    Article  PubMed  Google Scholar 

  42. Ellis AJ, Hughes RD, Wendon JA, Dunne J, Langley PG, Kelly JH, et al. Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure. Hepatology. 1996;24:1446–51.

    Article  CAS  PubMed  Google Scholar 

  43. Millis JM, Cronin DC, Johnson R, Conjeevaram H, Conlin C, Trevino S, et al. Initial experience with the modified extracorporeal liver-assist device for patients with fulminant hepatic failure: system modifications and clinical impact. Transplantation. 2002;74:1735–46.

    Article  PubMed  Google Scholar 

  44. Chen Y, Li J, Liu X, Zhao W, Wang Y, Wang X. Transplantation of immortalized human fetal hepatocytes prevents acute liver failure in 90 % hepatectomized mice. Transplant Proc. 2010;42:1907–14.

    Article  CAS  PubMed  Google Scholar 

  45. Schmelzer E, Wauthier E, Reid LM. The phenotypes of pluripotent human hepatic progenitors. Stem Cells. 2006;24:1852–8.

    Article  CAS  PubMed  Google Scholar 

  46. Almeida-Porada G, Zanjani ED, Porada CD. Bone marrow stem cells and liver regeneration. Exp Hematol. 2010;38:574–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013;499:481–4.

    Article  CAS  PubMed  Google Scholar 

  48. Di Campli C, Piscaglia AC, Pierelli L, Rutella S, Bonanno G, Alison MR, et al. A human umbilical cord stem cell rescue therapy in a murine model of toxic liver injury. Dig Liver Dis. 2004;36:603–13.

    Article  PubMed  Google Scholar 

  49. Soto-Gutierrez A, Kobayashi N, Rivas-Carrillo JD, Navarro-Alvarez N, Zhao D, Okitsu T, et al. Reversal of mouse hepatic failure using an implanted liver-assist device containing ES cell-derived hepatocytes. Nat Biotechnol. 2006;24:1412–9.

    Article  CAS  PubMed  Google Scholar 

  50. Bonavita AG, Quaresma K, Cotta-de-Almeida V, Pinto MA, Saraiva RM, Alves LA. Hepatocyte xenotransplantation for treating liver disease. Xenotransplantation. 2010;17:181–7.

    Article  PubMed  Google Scholar 

  51. Soltys KA, Soto-Gutiérrez A, Nagaya M, Baskin KM, Deutsch M, Ito R, et al. Barriers to the successful treatment of liver disease by hepatocyte transplantation. J Hepatol. 2010;53:769–74.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Jorns C, Ellis EC, Nowak G, Fischler B, Nemeth A, Strom SC, et al. Hepatocyte transplantation for inherited metabolic diseases of the liver. J Intern Med. 2012;272:201–23.

    Article  CAS  PubMed  Google Scholar 

  53. Wertheim JA, Baptista PM, Soto-Gutierrez A. Cellular therapy and bioartificial approaches to liver replacement. Curr Opin Organ Transplant. 2012;17:235–40.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Diekmann S, Bader A, Schmitmeier S. Present and future developments in hepatic tissue engineering for liver support systems: state of the art and future developments of hepatic cell culture techniques for the use in liver support systems. Cytotechnology. 2006;50:163–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Mooney DJ, Park S, Kaufmann PM, Sano K, McNamara K, Vacanti JP, et al. Biodegradable sponges for hepatocyte transplantation. J Biomed Mater Res. 1995;29:959–65.

    Article  CAS  PubMed  Google Scholar 

  56. Mooney DJ, Sano K, Kaufmann PM, Majahod K, Schloo B, Vacanti JP, et al. Long-term engraftment of hepatocytes transplanted on biodegradable polymer sponges. J Biomed Mater Res. 1997;37:413–20.

    Article  CAS  PubMed  Google Scholar 

  57. Kim TH, Lee HM, Utsonomiya H, Ma P, Langer R, Schmidt EV, et al. Enhanced survival of transgenic hepatocytes expressing hepatocyte growth factor in hepatocyte tissue engineering. Transplant Proc. 1997;29:858–60.

    Article  CAS  PubMed  Google Scholar 

  58. Ogawa K, Asonuma K, Inomata Y, Kim I, Ikada Y, Tabata Y, et al. The efficacy of prevascularization by basic FGF for hepatocyte transplantation using polymer devices in rats. Cell Transplant. 2001;10:723–9.

    CAS  PubMed  Google Scholar 

  59. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27:3675–83.

    CAS  PubMed  Google Scholar 

  60. Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 2010;16:814–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We would like to thank Ms. Ryan Fugett for editing and proofreading the manuscript. The work was supported in part by the National Institute of Health (EB002946 and HL075542).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dexi Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Alsaggar, M., Liu, D. (2016). Liver-Targeted Gene and Cell Therapies: An Overview. In: Terai, S., Suda, T. (eds) Gene Therapy and Cell Therapy Through the Liver. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55666-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55666-4_1

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55665-7

  • Online ISBN: 978-4-431-55666-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics