Skip to main content

Introduction

  • Chapter
  • First Online:
  • 672 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Physics of spin-charge coupled systems, systems with itinerant electrons and localized moments that interact with each other, is one of the major topics in the field of strongly correlated electrons. In these systems, the itinerant electrons mediate effective interactions between the localized moments giving rise to rich magnetic behaviors in some of the metallic magnets. Meanwhile, the scattering from localized moments may strongly affects electronic structure of itinerant electrons, inducing unconventional electronic states and transport phenomena. Among various materials of this class, recently, metallic magnets on pyrochlore and triangular lattices have gained interest for there unusual magnetic and transport properties observed in several materials. In these materials, along with the spin-charge coupling, geometrical frustration potentially plays an important roles. In this chapter, we review basic aspects of the spin-charge coupled systems and geometrical frustration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Hall effect induced by spin textures in weak coupling limit was also discussed in Ref. [50].

  2. 2.

    For the origin of the anomalous Hall effect of Nd\(_2\)Mo\(_2\)O\(_7\), there is also another theoretical proposal based on the orbital Berry phase [52].

  3. 3.

    The two-in two-out constraint is called ice rule after its discovery in the study of water ice, where the proton configuration is subject to the equivalent local constraint [5, 38].

  4. 4.

    This situlation is sometimes called as the cooperative paramagnet [56].

  5. 5.

    We also note that, in these studies, there was some disagreement on the overall structure of the phase diagram. However, all these studies consistently claimed that the high-T phase transition is of a Kosterlitz-Thouless type. For further details, see Ref. [24].

References

  1. N. Aito, M. Soda, Y. Kobayashi, M. Sato, J. Phys. Soc. Jpn. 72, 1226 (2003)

    Article  ADS  Google Scholar 

  2. N. Ali, M.P. Hill, S. Labroo, J.E. Greedan, J. Solid State Chem. 83, 178 (1989)

    Article  ADS  Google Scholar 

  3. P.W. Anderson, H. Hasegawa, Phys. Rev. 100, 675 (1955)

    Article  ADS  Google Scholar 

  4. H. Aoki, T. Sakakibara, K. Matsuhira, Z. Hiroi, J. Phys. Soc. Jpn. 73, 2851 (2004)

    Article  ADS  Google Scholar 

  5. J.D. Bernal, R.H. Fowler, J. Chem. Phys. 1, 515 (1933)

    Article  ADS  Google Scholar 

  6. K. Binder, A.P. Young, Rev. Mod. Phys. 58, 801 (1986)

    Article  ADS  Google Scholar 

  7. S.T. Bramwell, M.J.P. Gingras, Science 294, 1495 (2001)

    Article  ADS  Google Scholar 

  8. S.T. Bramwell, M.J.P. Gingras, P.C.W. Hildsworth, in Frustrated Spin Systems, ed. by H.T. Diep (World Scientific, Singapore, 2005). (Chap. 7)

    Google Scholar 

  9. C.R. Castelnovo, R. Moessner, S.L. Sondhi, Nature 451, 42 (2008)

    Article  ADS  Google Scholar 

  10. G.W. Chern, S. Maiti, R.M. Fernandes, P. Wölfle, Phys. Rev. Lett. 110, 146602 (2013)

    Article  ADS  Google Scholar 

  11. S. Fujiki, K. Shutoh, Y. Abe, S. Katsura, J. Phys. Soc. Jpn. 52, 1531 (1983)

    Article  ADS  Google Scholar 

  12. S. Fujiki, K. Shutoh, S. Katsura, J. Phys. Soc. Jpn. 53, 1371 (1984)

    Article  ADS  Google Scholar 

  13. S. Fujiki, K. Shutoh, S. Inawashiro, Y. Abe, S. Katsura, J. Phys. Soc. Jpn. 55, 3326 (1986)

    Article  ADS  Google Scholar 

  14. J.S. Gardner, M.J.P. Gingras, J.E. Greedan, Rev. Mod. Phys. 82, 53 (2010)

    Article  ADS  Google Scholar 

  15. J.E. Greedan, M. Sato, N. Ali, W.R. Datars, J. Solid State Chem. 68, 300 (1987)

    Article  ADS  Google Scholar 

  16. N. Hanasaki, K. Watanabe, T. Ohtsuka, I. Kezsmarki, S. Iguchi, S. Miyasaka, Y. Tokura, Phys. Rev. Lett. 99, 086401 (2007)

    Article  ADS  Google Scholar 

  17. M.J. Harris, S.T. Bramwell, D.F. McMorrow, T. Zeiske, K.W. Godfrey, Phys. Rev. Lett. 79, 2554 (1997)

    Article  ADS  Google Scholar 

  18. R. Higashinaka, H. Fukazawa, K. Deguchi, Y. Maeno, J. Phys. Soc. Jpn. 73, 2845 (2004)

    Article  ADS  Google Scholar 

  19. S. Iguchi, N. Hanasaki, N. Takeshita, C. Terakura, Y. Taguchi, H. Takagi, Y. Tokura, Phys. Rev. Lett. 102, 136407 (2009)

    Article  ADS  Google Scholar 

  20. A. Ikeda, H. Kawamura, J. Phys. Soc. Jpn. 77, 073707 (2008)

    Article  ADS  Google Scholar 

  21. T. Kasuya, Prog. Theor. Phys. 16, 45 (1956)

    Article  ADS  Google Scholar 

  22. T. Katsufuji, H.Y. Hwang, S.-W. Cheong, Phys. Rev. Lett. 84, 1998 (2000)

    Article  ADS  Google Scholar 

  23. M. Kohmoto, Ann. Phys. 160, 343 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  24. D.P. Landau, Phys. Rev. B 27, 5604 (1983)

    Article  ADS  Google Scholar 

  25. D. Loss, P.M. Goldbart, Phys. Rev. B 45, 13544 (1992)

    Article  ADS  Google Scholar 

  26. Y. Machida, S. Nakatsuji, Y. Maeno, T. Tayama, T. Sakakibara, S. Onoda, Phys. Rev. Lett. 98, 057203 (2007)

    Article  ADS  Google Scholar 

  27. Y. Machida, S. Nakatsuji, S. Onoda, T. Tayama, T. Sakakibara, Nature 463, 210 (2010)

    Article  ADS  Google Scholar 

  28. M. Matsuda, C. de la Cruz, H. Yoshida, M. Isobe, R.S. Fishman, Phys. Rev. B 85, 144407 (2012)

    Article  ADS  Google Scholar 

  29. K. Matsuhira, M. Wakeshima, R. Nakanishi, T. Yamada, A. Nakamura, W. Kawano, S. Takagi, Y. Hinatsu, J. Phys. Soc. Jpn. 76, 043706 (2007)

    Article  ADS  Google Scholar 

  30. K. Matsuhira, M. Wakeshima, Y. Hinatsu, S. Takagi, J. Phys. Soc. Jpn. 80, 094701 (2011)

    Article  ADS  Google Scholar 

  31. M. Mekata, J. Phys. Soc. Jpn. 42, 76 (1977)

    Article  ADS  Google Scholar 

  32. R. Melko, M.J.P. Gingras, J. Phys. Condens. Matter 16, R1227 (2004)

    Google Scholar 

  33. E.-G. Moon, C. Xu, Y.-B. Kim, L. Balents, Phys. Rev. Lett. 111, 206401 (2013)

    Article  ADS  Google Scholar 

  34. Y. Motome, N. Furukawa, Phys. Rev. B 82, 060407(R) (2010)

    Article  ADS  Google Scholar 

  35. Y. Motome, N. Furukawa, Phys. Rev. Lett. 104, 106407 (2010)

    Article  ADS  Google Scholar 

  36. S. Nakatsuji, Y. Machida, Y. Maeno, T. Tayama, T. Sakakibara, J. van Duijn, L. Balicas, J.N. Millican, R.T. Macaluso, J.Y. Chan, Phys. Rev. Lett. 96, 087204 (2006)

    Article  ADS  Google Scholar 

  37. K. Ohgushi, S. Murakami, N. Nagaosa, Phys. Rev. B 62, 6065(R) (2000)

    Article  ADS  Google Scholar 

  38. L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935)

    Article  Google Scholar 

  39. R. Peierls, Quantum Theory of Solids (Clarendon Press, Oxford, 1955)

    Google Scholar 

  40. A.P. Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, B.S. Shastry, Nature (London) 399, 333 (1999)

    Article  ADS  Google Scholar 

  41. M.A. Ruderman, C. Kittel, Phys. Rev. 96, 99 (1954)

    Article  ADS  Google Scholar 

  42. S. Satpathy, Z.S. Popović, F.R. Vukajlović, Phys. Rev. Lett. 76, 960 (1996)

    Article  ADS  Google Scholar 

  43. J.C. Slater, Phys. Rev. 82, 538 (1951)

    Article  ADS  Google Scholar 

  44. I.V. Solovyev, Phys. Rev. B 67, 174406 (2003)

    Article  ADS  Google Scholar 

  45. Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagaosa, Y. Tokura, Science 291, 2573 (2001)

    Article  ADS  Google Scholar 

  46. Y. Taguchi, T. Sasaki, S. Awaji, Y. Iwasa, T. Tayama, T. Sakakibara, S. Iguchi, T. Ito, Y. Tokura, Phys. Rev. Lett. 90, 257202 (2003)

    Article  ADS  Google Scholar 

  47. T. Takagi, M. Mekata, J. Phys. Soc. Jpn. 62, 3943 (1993)

    Article  ADS  Google Scholar 

  48. T. Takagi, M. Mekata, J. Phys. Soc. Jpn. 64, 4609 (1995)

    Article  ADS  Google Scholar 

  49. H. Takayama, K. Matsumoto, H. Kawahara, K. Wada, J. Phys. Soc. Jpn. 52, 2888 (1983)

    Article  ADS  Google Scholar 

  50. G. Tatara, H. Kawamura, J. Phys. Soc. Jpn. 71, 2613 (2002)

    Article  ADS  Google Scholar 

  51. Y. Tokura (ed.), Colossal Magnetoresistive Oxides (CRC Press, Amsterdam, 2000)

    Google Scholar 

  52. T. Tomizawa, H. Kontani, Phys. Rev. B 80, 100401(R) (2009)

    Article  ADS  Google Scholar 

  53. D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Phys. Rev. Lett. 49, 405 (1982)

    Article  ADS  Google Scholar 

  54. N. Todoroki, S. Miyashita, J. Phys. Soc. Jpn. 73, 412 (2004)

    Article  ADS  Google Scholar 

  55. M. Udagawa, H. Ishizuka, Y. Motome, Phys. Rev. Lett. 108, 066406 (2012)

    Article  ADS  Google Scholar 

  56. J. Villain, R. Bidaux, J.-P. Carton, R. Conte, J. Phys. (Paris) 41, 1263 (1980)

    Article  MathSciNet  Google Scholar 

  57. K. Wada, T. Tsukada, T. Ishikawa, J. Phys. Soc. Jpn. 51, 1331 (1982)

    Article  ADS  Google Scholar 

  58. D. Yanagishima, Y. Maeno, J. Phys. Soc. Jpn. 70, 2880 (2001)

    Article  ADS  Google Scholar 

  59. J. Ye, Y.B. Kim, A.J. Millis, B.I. Shraiman, P. Majumdar, Z. Tešanovic, Phys. Rev. Lett. 83, 3737 (1999)

    Google Scholar 

  60. H. Yoshida, E. Takayama-Muromachi, M. Isobe, J. Phys. Soc. Jpn. 80, 123703 (2011)

    Article  ADS  Google Scholar 

  61. K. Yosida, Phys. Rev. 106, 893 (1957)

    Article  ADS  Google Scholar 

  62. C. Zener, Phys. Rev. 82, 403 (1951)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Ishizuka .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Ishizuka, H. (2015). Introduction. In: Magnetism and Transport Phenomena in Spin-Charge Coupled Systems on Frustrated Lattices. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55663-3_1

Download citation

Publish with us

Policies and ethics