Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 625 Accesses

Abstract

We have synthesized B20-type Co\(_{1-x}\)Fe\(_x\)Ge and Co\(_{1-y}\)Ni\(_y\)Ge by a high-pressure method and investigated the band-filling dependence of thermoelectric properties. Non-doped CoGe shows a large figure of merit (\(ZT\approx 0.11\)) due to its low resistivity and large negative Seebeck coefficient (\(S=-82\,\mathrm {\mu V/K}\)) at 300 K. S shows a sign change with increasing Fe concentration, yielding its maximum value (\(S=28\,\mathrm {\mu V/K}\) at 300 K) at \(x=0.2\). The Boltzmann transport model can explain semi-quantitatively the experimental results, from which we conclude that the large positive or negative S originates from the asymmetric band structure composed of the Dirac cone and the flat band with sharp bends around the Fermi energy (\(E_F\)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Relaxation times \(\tau \) for all the electron states are assumed to be identical.

References

  1. G.D. Mahan, Solid State Phys. 51, 81 (1998)

    Google Scholar 

  2. Y. Nishino, S. Deguchi, U. Mizutani, Phys. Rev. B 74, 115115 (2006)

    Article  ADS  Google Scholar 

  3. H.J. van Daal, P.B. van Aken, K.H.J. Buschow, Phys. Lett. A 49, 246 (1974)

    Article  ADS  Google Scholar 

  4. R.J. Gambino, W.D. Grobman, A.M. Toxen, Appl. Phys. Lett. 22, 506 (1973)

    Article  ADS  Google Scholar 

  5. I. Terasaki, Y. Sasago, K. Uchinokura, Phys. Rev. B 56, R12685 (1997)

    Article  ADS  Google Scholar 

  6. N.W. Aschcroft, N.D. Mermin, Solid State Physics (Thomson Learning, London, 1976)

    Google Scholar 

  7. K. Kuroki, R. Arita, J. Phys. Soc. Jpn. 76, 083707 (2007)

    Article  ADS  Google Scholar 

  8. G.Y. Guo, G.A. Botton, Y. Nishino, J. Phys. Condens. Matter 10, L119 (1998)

    Article  ADS  Google Scholar 

  9. W. Koshibae, K. Tsutsui, S. Maekawa, Phys. Rev. B 62, 6869 (2000)

    Article  ADS  Google Scholar 

  10. S. Asanabe, D. Shinoda, Y. Sasaki, Phys. Rev. 134, A774 (1964)

    Article  ADS  Google Scholar 

  11. D.J. McNeill, R.M. Ware, Br. J. Appl. Phys. 15, 1517 (1964)

    Article  ADS  Google Scholar 

  12. A. Sakai, F. Ishii, Y. Onose, Y. Tomioka, S. Yotsuhashi, H. Adachi, N. Nagaosa, Y. Tokura, J. Phys. Soc. Jpn. 76, 093601 (2007)

    Article  ADS  Google Scholar 

  13. C.S. Lue, Y.K. Kuo, C.L. Huang, W.J. Lai, Phys. Rev. B 69, 125111 (2004)

    Article  ADS  Google Scholar 

  14. C.C. Li, W.L. Ren, L.T. Zhang, K. Itoh, J.S. Wu, J. Appl. Phys. 98, 063706 (2005)

    Article  ADS  Google Scholar 

  15. W.L. Ren, C.C. Li, L.T. Zhang, K. Ito, W.J. Lai, J. Alloys Compd. 392, 50 (2005)

    Article  Google Scholar 

  16. Y.K. Kuo, K.M. Sivakumar, S.J. Huang, C.S. Lue, J. Appl. Phys. 98, 123510 (2005)

    Article  ADS  Google Scholar 

  17. E. Skoug, C. Zhou, Y. Pei, D.T. Morelli, Appl. Phys. Lett. 94, 022115 (2009)

    Article  ADS  Google Scholar 

  18. F. Wald, S.J. Michalik, J. Less-Common Met. 24, 277 (1971)

    Article  Google Scholar 

  19. H. Takizawa, T. Sato, T. Endo, M. Shimada, J. Solid State Chem. 73, 40 (1988)

    Article  ADS  Google Scholar 

  20. N. Kanazawa, Y. Onose, Y. Shiomi, S. Ishiwata, Y. Tokura, Appl. Phys. Lett. 100, 093902 (2012)

    Article  ADS  Google Scholar 

  21. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001)

    Google Scholar 

  22. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  23. G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67 (2006)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoya Kanazawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kanazawa, N. (2015). 3D Dirac Electrons and Large Thermoelectric Properties in CoGe. In: Charge and Heat Transport Phenomena in Electronic and Spin Structures in B20-type Compounds. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55660-2_6

Download citation

Publish with us

Policies and ethics