Skyrmion Formation in Epitaxial FeGe Thin Films

  • Naoya Kanazawa
Part of the Springer Theses book series (Springer Theses)


We study the skyrmion formation in nanostructured FeGe Hall-bar devices by measurements of topological Hall effect, which extracts the winding number of a spin texture as an emergent magnetic field. Stepwise profiles of the topological Hall resistivity are observed in the course of varying the applied magnetic field, which arise from instantaneous changes in the magnetic structure such as creation, annihilation, and discontinuous motion of skyrmions. The discrete changes in topological Hall resistivity demonstrate the quantized nature of emergent magnetic flux inherent in each skyrmion, which had been indistinguishable in many-skyrmion systems on a macroscopic scale.


Reflection High Energy Electron Diffraction Anomalous Hall Effect Reflection High Energy Electron Diffraction Pattern Circuit Line Hall Resistivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P.G. Niklowitz, P. Böni, Phys. Rev. Lett. 102, 186602 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    M. Lee, W. Kang, Y. Onose, Y. Tokura, N.P. Ong, Phys. Rev. Lett. 102, 186601 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama, S. Wakimoto, K. Kakurai, S. Ishiwata, Y. Tokura, Phys. Rev. Lett. 106, 156603 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    B.J. Chapman, M.G. Grossnickle, T. Wolf, M. Lee, Phys. Rev. B 88, 214406 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    R. Ritz, M. Halder, M. Wagner, C. Franz, A. Bauer, C. Pfleiderer, Nature (London) 497, 231 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    C. Franz, F. Freimuth, A. Bauer, R. Ritz, C. Schnarr, C. Duvinage, T. Adams, S. Blügel, A. Rosch, Y. Mokrousov, C. Pfleiderer, Phys. Rev. Lett. 102, 186601 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    A. Fert, V. Cros, J. Sampaio, Nat. Nanotech. 8, 152 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    N. Nagaosa, Y. Tokura, Nat. Nanotech. 8, 899 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    S.S.P. Parkin, M. Hayashi, L. Thomas, Science 320, 190 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, S. Blügel, Nat. Phys. 7, 713 (2011)CrossRefGoogle Scholar
  11. 11.
    K. Shibata, X.Z. Yu, T. Hara, D. Morikawa, N. Kanazawa, K. Kimoto, S. Ishiwata, Y. Matsui, Y. Tokura, Nat. Nanotech. 8, 723 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Neubauer, W. Münzer, A. Bauer, T. Adams, R. Georgii, P. Böni, R.A. Duine, K. Everschor, M. Garst, A. Rosch, Science 330, 1648 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    X.Z. Yu, N. Kanazawa, W.Z. Zhang, T. Nagai, T. Hara, K. Kimoto, Y. Matsui, Y. Onose, Y. Tokura, Nat. Commun. 3, 988 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    N. Romming, C. Hanneken, M. Menzel, J.E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, R. Wiesendanger, Science 341, 636 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    S.X. Huang, C.L. Chien, Phys. Rev. Lett. 108, 267201 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Li, N. Kanazawa, X.Z. Yu, A. Tsukazaki, M. Kawasaki, M. Ichikawa, X.F. Jin, F. Kagawa, Y. Tokura, Phys. Rev. Lett. 110, 117202 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    T. Yokouchi, N. Kanazawa, A. Tsukazaki, Y. Kozuka, M. Kawasaki, M. Ichikawa, F. Kagawa, Y. Tokura, Phys. Rev. B 89, 064416 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    H. Du, W. Ning, M. Tian, Y. Zhang, Phys. Rev. B 87, 014401 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    L. Sun, R.X. Cao, B.F. Miao, Z. Feng, B. You, D. Wu, W. Zhang, An Hu, H.F. Ding, Phys. Rev. Lett. 110, 167201 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    J. Sampaio, V. Cros, S. Rohart, A. Thiaville, A. Fert, Nat. Nanotech. 8, 839 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    S. Rohart, A. Thiaville, Phys. Rev. B 88, 184422 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    M. Beg, D. Chernyshenko, M.A. Bisotti, W.W. Wang, M. Albert, R.L. Stamps, H. Fangohr, arXiv: 1312.7665v2
  23. 23.
    X.Z. Yu, J.P. DeGrave, Y. Hara, S. Jin, Y. Tokura, Nano Lett. 13, 3755 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    H. Du, J.P. DeGrave, F. Xue, D. Liang, W. Ning, J. Yang, M. Tian, Y. Zhang, S. Jin, Nano Lett. 14, 2026 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Onose, N. Takeshita, C. Terakura, H. Takagi, Y. Tokura, Phys. Rev. B 72, 224431 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    N. Kanazawa, M. Kubota, A. Tsukazaki, Y. Kozuka, K.S. Takahashi, M. Kawasaki, M. Ichikawa, F. Kagawa, Y. Tokura, Phys. Rev. B 91, 041122(R) (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagaosa, Y. Tokura, Science 291, 2573 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Böni, Science 323, 915 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, Y. Tokura, Nature (London) 465, 901 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Department of Applied PhysicsThe University of TokyoTokyoJapan

Personalised recommendations