Magnetic and Transport Properties in B20-type Germanides

  • Naoya Kanazawa
Part of the Springer Theses book series (Springer Theses)


We overview magnetization and electrical-transport properties of a series of B20-type germanides. From systematic measurements of those properties, especially by determining the critical magnetic field \(H_{\mathrm {c}}\), we can roughly estimate change in helical period with a variation of the composition. The helical period changes by two orders of magnitude: the shortest period (\(\approx \)3 nm) in MnGe and a diverging behavior of the period at Mn\(_{1-x}\)Fe\(_x\)Ge (\(x=0.8\)), which is also confirmed by a collaborative work using Lorentz transmission electron microscopy (LTEM). The large variation is due to a change in Dzyaloshinsky-Moriya (DM) interaction, which crosses zero at the diverging point. Anomalous Hall effect in the Mn\(_{1-x}\)Fe\(_x\)Ge system also scales the variation of the DM interaction.


Hall Current Berry Phase Hall Conductivity Helical Magnet Anomalous Hall Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    N. Nagaosa, Y. Tokura, Phys. Scr. T146, 014020 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    E.H. Hall, Philos. Mag. 10, 301 (1880)CrossRefGoogle Scholar
  3. 3.
    N. Nagaosa, J. Sinova, S. Onoda, A.H. MacDonald, N.P. Ong, Rev. Mod. Phys. 82, 1539 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    D. Xiao, M.C. Chang, Q. Niu, Rev. Mod. Phys. 82, 1959 (2010)MathSciNetADSCrossRefMATHGoogle Scholar
  5. 5.
    M.V. Berry, Proc. R. Soc. Lond. A Math. Phys. Sci. 392, 45 (1984)ADSCrossRefMATHGoogle Scholar
  6. 6.
    Y. Onose, N. Takeshita, C. Terakura, H. Takagi, Y. Tokura, Phys. Rev. B 72, 224431 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    M. Lee, Y. Onose, Y. Tokura, N.P. Ong, Phys. Rev. B 75, 172403 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    M. Kataoka, O. Nakanishi, J. Phys. Soc. Jpn. 50, 3888 (1981)ADSCrossRefGoogle Scholar
  9. 9.
    K. Shibata, X.Z. Yu, T. Hara, D. Morikawa, N. Kanazawa, K. Kimoto, S. Ishiwata, Y. Matsui, Y. Tokura, Nat. Nanotechnol. 8, 723 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    A. Bauer, A. Neubauer, C. Franz, W. Münzer, M. Garst, C. Pfleiderer, Phys. Rev. B 82, 064404 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    M.G. Chaudron, C.R. Acad, Sci. Paris Ser. C 281, 527 (1975)Google Scholar
  12. 12.
    N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama, S. Wakimoto, K. Kakurai, S. Ishiwata, Y. Tokura, Phys. Rev. Lett. 106, 156603 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    N. Kanazawa, J.-H. Kim, D.S. Inosov, J.S. White, N. Egetenmeyer, J.L. Gavilano, S. Ishiwata, Y. Onose, T. Arima, B. Keimer, Y. Tokura, Phys. Rev. B 86, 134425 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    P. Bak, M.H. Jensen, J. Phys. C 13, L881 (1980)ADSCrossRefGoogle Scholar
  15. 15.
    O. Nakanishi, A. Yanase, A. Hasegawa, M. Kataoka, Solid State Commun. 35, 995 (1980)ADSCrossRefGoogle Scholar
  16. 16.
    M. Kataoka, J. Phys. Soc. Jpn. 56, 3635 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    S. Onoda, N. Sugimoto, N. Nagaosa, Phys. Rev. B 77, 165103 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Z. Fang, N. Nagaosa, K.S. Takahashi, A. Asamitsu, R. Mathieu, T. Ogasawara, H. Yamada, M. Kawasaki, Y. Tokura, K. Terakura, Science 302, 92 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Department of Applied PhysicsThe University of TokyoTokyoJapan

Personalised recommendations