• Naoya Kanazawa
Part of the Springer Theses book series (Springer Theses)


Compounds of transition-metal element and group-14 element with composition ratio of 1:1 sometimes crystallize into a so-called B20-type structure with noncentrosymmetric space group \(P2_13\). Those compounds are named to be “B20-type compounds” after their crystal structure. Their various interesting physical properties have been a source of extensive research activities for almost half a century, offering new research areas as represented by discovery of magnetic skyrmions in chiral-lattice magnets [7, 31]. This thesis is devoted to electrical and thermal transport experiments performed on 3d-transition-metal germanium compounds with the B20-type crystal structure, whose physical properties have been scarcely investigated. Our findings in the germanide system are not just to confirm the physics already revealed in other B20-systems, but explore new insights and phenomena in chiral-lattice compounds. In this Chapter, we review basic properties of B20-type compounds, i.e., their crystal structure and characteristic electronic/spin structures, for better understanding of novel transport properties emerging in the germanide system.


Magnetic Structure Helical Structure Neutron Diffraction Experiment Dirac Electron Kondo Insulator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Y. Ishikawa, K. Tajima, D. Bloch, M. Roth, Solid State Commun. 19, 525 (1976)ADSCrossRefGoogle Scholar
  2. 2.
    T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism (Springer, Berlin, 1985)CrossRefGoogle Scholar
  3. 3.
    G. Aeppli, Z. Fisk, Comments. Condens. Matter Phys. 16, 155 (1992)Google Scholar
  4. 4.
    D.M. Rowe, CRC Handbook of Thermoelectrics (CRC, Boca Raton, FL, 1995)CrossRefGoogle Scholar
  5. 5.
    L. Pauling, A.M. Soldate, Acta Cryst. 1, 212 (1948)CrossRefGoogle Scholar
  6. 6.
    V.I. Larchev, S.V. Popova, J. Less-Common Met. 87, 53 (1982)CrossRefGoogle Scholar
  7. 7.
    S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Böni, Science 323, 915 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    M. Uchida, Y. Onose, Y. Matsui, Y. Tokura, Science 311, 359 (2006)Google Scholar
  9. 9.
    P. Bak, M.H. Jensen, J. Phys. C 13, L881 (1980)ADSCrossRefGoogle Scholar
  10. 10.
    O. Nakanishi, A. Yanase, A. Hasegawa, M. Kataoka, Solid State Commun. 35, 995 (1980)ADSCrossRefGoogle Scholar
  11. 11.
    M. Kataoka, J. Phys. Soc. Jpn. 56, 3635 (1986)ADSCrossRefGoogle Scholar
  12. 12.
    S.V. Grigoriev, S.V. Maleyev, A.I. Okorokov, Y.O. Chetverikov, H. Eckerlebe, Phys. Rev. B 73, 224440 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    S.V. Grigoriev, V.A. Dyadkin, D. Menzel, J. Schoenes, Y.O. Chetverikov, A.I. Okorokov, H. Eckerlebe, S.V. Maleyev, Phys. Rev. B 76, 224424 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    M. Takeda, Y. Endoh, K. Kakurai, Y. Onose, J. Suzuki, Y. Tokura, J. Phys. Soc. Jpn. 78, 093704 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    K. Ishizuka, B. Allman, J. Electron Microsc. 54, 191 (2005)CrossRefGoogle Scholar
  16. 16.
    J. Beille, J. Voiron, M. Roth, Solid State Commun. 47, 399 (1983)ADSCrossRefGoogle Scholar
  17. 17.
    N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama, S. Wakimoto, K. Kakurai, S. Ishiwata, Y. Tokura, Phys. Rev. Lett. 106, 156603 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    N. Kanazawa, J.-H. Kim, D.S. Inosov, J.S. White, N. Egetenmeyer, J.L. Gavilano, S. Ishiwata, Y. Onose, T. Arima, B. Keimer, Y. Tokura, Phys. Rev. B 86, 134425 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Li, N. Kanazawa, X.Z. Yu, A. Tsukazaki, M. Kawasaki, M. Ichikawa, X. F. Jin, F. Kagawa and Y. Tokura. Phys. Rev. Lett. 110, 117202 (2013)Google Scholar
  20. 20.
    S.V. Grigoriev, V.A. Dyadkin, E.V. Moskvin, D. Lamago, Th Wolf, H. Eckerlebe, S.V. Maleyev, Phys. Rev. B 79, 144417 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Onose, N. Takeshita, C. Terakura, H. Takagi, Y. Tokura, Phys. Rev. B 72, 224431 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    K. Shibata, X.Z. Yu, T. Hara, D. Morikawa, N. Kanazawa, K. Kimoto, S. Ishiwata, Y. Matsui, Y. Tokura, Nat. Nanotechnol. 8, 723 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    B. Lebech, J. Bernhard, T. Freltoft, J. Phys.: Condens. Matter 1, 6105 (1989)ADSGoogle Scholar
  24. 24.
    T. Adams, A. Chacon, M. Wagner, A. Bauer, G. Brandl, B. Pedersen, H. Berger, P. Lemmens, C. Pfleiderer, Phys. Rev. Lett. 108, 237204 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    S. Seki, X.Z. Yu, S. Ishiwata, Y. Tokura, Science 336, 198 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    S. Kusaka, K. Yamamoto, T. Komatsubara, Y. Ishikawa, Solid State Commun. 20, 925 (1976)ADSCrossRefGoogle Scholar
  27. 27.
    M. Date, K. Okuda, K. Kadowaki, J. Phys. Soc. Jpn. 42, 1555 (1977)ADSCrossRefGoogle Scholar
  28. 28.
    K. Kadowaki, K. Okuda, M. Date, J. Phys. Soc. Jpn. 51, 2433 (1981)ADSCrossRefGoogle Scholar
  29. 29.
    A. Bogdanov, D.A. Yablonskii, Sov. Phys. JETP 68, 101 (1989)Google Scholar
  30. 30.
    A. Bogdanov, A. Hubert, J. Magn. Magn. Mater. 138, 255 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, Y. Tokura, Nature (London) 465, 901 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    T.H.R. Skyrme, Proc. R. Soc. A 260, 127 (1961); T.H.R. Skyrme. Nucl. Phys. 31, 556 (1962)MathSciNetCrossRefGoogle Scholar
  33. 33.
    C. Pfleiderer, D. Reznik, L. Pintschovius, H.v. Löhneysen, M. Garst, A. Rosch. Nature 427, 227 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    U.K. Rößler, A.N. Bogdanov, C. Pfleiderer, Nature 442, 797 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    B. Binz, A. Vishwanath, V. Aji, Phys. Rev. Lett. 96, 207202 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    I. Fischer, N. Shah, A. Rosch, Phys. Rev. B 77, 024415 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    O. Nakanishi, A. Yanase, A. Hasegawa, J. Magn. Magn. Mater. 15–18, 879 (1980)CrossRefGoogle Scholar
  38. 38.
    L.F. Mattheiss, D.R. Hamann, Phys. Rev. B 47, 13114 (1993)ADSCrossRefGoogle Scholar
  39. 39.
    A. Sakai, F. Ishii, Y. Onose, Y. Tomioka, S. Yotsuhashi, H. Adachi, N. Nagaosa, Y. Tokura, J. Phys. Soc. Jpn. 76, 093601 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    S. Yeo, S. Nakatsuji, A.D. Bianchi, P. Schlottmann, Z. Fisk, L. Balicas, P.A. Stampe, R.J. Kennedy, Phys. Rev. Lett. 91, 046401 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    V.I. Anisimov, R. Hlubina, M.A. Korotin, V.V. Mazurenko, T.M. Rice, A.O. Shorikov, M. Sigrist, Phys. Rev. Lett. 89, 257203 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Department of Applied PhysicsThe University of TokyoTokyoJapan

Personalised recommendations