Theoretical Framework and Motivation
Chapter
First Online:
- 219 Downloads
Abstract
The Standard Model is currently the most precise theoretical framework to describe the sub-atomic particles and their behavior, and a large number of precision measurements have validated its accuracy. However, there are still many problems that the SM leaves unsolved. This indicates that it is a low-energy approximation of a more general underlying theory, and new physics beyond the SM does exist. Supersymmetry, which is a symmetry that relates bosons and fermions, is one of the most promising theories providing a solution to the problems in the SM. This chapter gives an overview of the SUSY models explored in this dissertation and their theoretical motivations.
Keywords
Dark Matter Higgs Boson Gauge Boson Minimal Supersymmetric Standard Model SUSY Breaking
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964)ADSMathSciNetCrossRefGoogle Scholar
- 2.P.W. Higgs, Phys. Lett. 12, 132 (1964)ADSCrossRefGoogle Scholar
- 3.ATLAS Collaboration, Phys. Lett. B716, 1 (2012)Google Scholar
- 4.C.M.S. Collaboration, Phys. Lett. B716, 30 (2012)ADSGoogle Scholar
- 5.
- 6.J.L. Feng, Naturalness and the status of supersymmetry (2013). arxiv:1302.6587 [hep-ph]
- 7.S.P. Martin, A supersymmetry primer (1997). arXiv:hep-ph/9709356
- 8.K. Nakamura et al., Particle data group. J. Phys. G 37, 075021 (2010)ADSCrossRefGoogle Scholar
- 9.G.D. Coughlan et al., Phys. Lett. B131, 59 (1983)ADSCrossRefGoogle Scholar
- 10.M. Ibe, Y. Shinbara, T.T. Yanagida, Phys. Lett. B639, 534 (2006)ADSCrossRefGoogle Scholar
- 11.K. Huitu, J. Laamanen, P.N. Pandita, Phys. Rev. D65, 115003 (2010)ADSGoogle Scholar
- 12.M. Ibe, S. Matsumoto, T.T. Yanagida, Phys. Rev. D85, 095011 (2012)ADSGoogle Scholar
- 13.M. Ibe, S. Matsumoto, R. Sato, Phys. Lett. B721, 252 (2013)ADSCrossRefGoogle Scholar
- 14.L.J. Hall, Y. Nomura, S. Shirai, JHEP 1301, 036 (2013)ADSCrossRefGoogle Scholar
- 15.F. Gabbiani, E. Gabrielli, A. Masiero, L. Silvestrini, Nucl. Phys. B477, 321 (1996)ADSCrossRefGoogle Scholar
- 16.J. Hisano, S. Matsumoto, M. Nagai, O. Saito, M. Senami, Phys. Lett. B646, 34 (2007)ADSCrossRefGoogle Scholar
- 17.T. Moroi, L. Randall, Nucl. Phys. B570, 455 (2000)ADSCrossRefGoogle Scholar
- 18.ALEPH Collaboration, Phys.Lett. B533, 223 (2002)Google Scholar
- 19.O.P.A.L. Collaboration, Eur. Phys. J. C29, 479 (2003)ADSCrossRefGoogle Scholar
- 20.DELPHI Collaboration, Eur. Phys. J. C34, 145 (2004)Google Scholar
- 21.
- 22.ATLAS Collaboration, JHEP 1301, 131 (2013)Google Scholar
- 23.T. Cohen, M. Lisanti, A. Pierce, T.R. Slatyer, Wino dark matter under siege (2013). arXiv:1307.4082 [hep-ph]
- 24.J. Fan, M. Reece, In wino veritas? Indirect searches shed light on neutralino dark matter (2013). arXiv:1307.4400 [hep-ph]
- 25.Fermi-LAT Collaboration, Phys. Rev. Lett. 107, 241302 (2011)CrossRefGoogle Scholar
- 26.H.E.S.S. Collaboration, Phys. Rev. Lett. 110, 041301 (2013)Google Scholar
- 27.PAMELA Collaboration, Phys. Rev. Lett. 105, 121101 (2010)Google Scholar
- 28.J.F. Navarro, C.S. Frenk, S.D. White, Astrophys. J. 462, 563 (1996)ADSCrossRefGoogle Scholar
- 29.J. Hisano, K. Ishiwata, N. Nagata, Phys. Lett. B706, 208 (2011)ADSCrossRefGoogle Scholar
- 30.J. Hisano, K. Ishiwata, N. Nagata, T. Takesako, JHEP 1107, 005 (2011)ADSCrossRefGoogle Scholar
- 31.XENON100 Collaboration, Phys. Rev. Lett. 109, 181301 (2012)CrossRefGoogle Scholar
- 32.L.U.X. Collaboration, Phys. Rev. Lett. 112, 091303 (2014)ADSCrossRefGoogle Scholar
Copyright information
© Springer Japan 2016