Skip to main content

Highly Conductive Ink-Jet-Printed Lines

  • Chapter
  • 2695 Accesses

Abstract

Printing techniques, such as ink-jet printing, screen printing, and flexography, are promising alternatives to conventional photolithography for the production of electronic devices. The advantages of these techniques include low manufacturing costs, environmental sustainability, manufacturing simplicity, and high material usage. Among these techniques, ink-jet printing is particularly advantageous because it is a noncontact, maskless process with drop-on-demand and scale-up feasibilities. Therefore, ink-jet printing is currently used to fully or partially fabricate advanced electronic devices. In this chapter, we introduce some ink-jet printing technologies to improve the electrical conductivity of printed lines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C. Zhong, C. Duan, F. Huang, H. Wu, Y. Cao, Chem. Mater. 23, 326–340 (2011)

    Article  Google Scholar 

  2. P. Calvert, Chem. Mater. 13, 3299–3305 (2001)

    Article  Google Scholar 

  3. B.J. de Gans, P.C. Duineveld, U.S. Schubert, Adv. Mater. 16, 203–213 (2004)

    Article  Google Scholar 

  4. A. Teichler, R. Eckardt, S. Hoeppener, C. Friebe, J. Perelaer, A. Senes, M. Morana, C.J. Brabec, U.S. Schubert, Adv. Energy Mater. 1, 105–114 (2011)

    Article  Google Scholar 

  5. M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Adv. Mater. 22, 673–685 (2010)

    Article  Google Scholar 

  6. M.B. Madec, P.J. Smith, A. Malandraki, N. Wang, J.G. Korvink, S.G.J. Yeates, Mater. Chem. 20, 9155–9160 (2010)

    Article  Google Scholar 

  7. M.L. Chabinyc, W.S. Wong, A.C. Arias, S. Ready, R.A. Lujan, J.H. Daniel, B. Krusor, R.B. Apte, A. Salleo, R.A. Street, Proc. IEEE 93, 1491–1499 (2005)

    Article  Google Scholar 

  8. S. Gamerith, A. Klug, H. Scheiber, U. Scherf, E. Moderegger, E.J.W. List, Adv. Funct. Mater. 17, 3111–3118 (2007)

    Article  Google Scholar 

  9. Y. Noguchi, T. Sekitani, T. Yokota, T. Someya, Appl. Phys. Lett. 93, 043303 (2008)

    Article  Google Scholar 

  10. H. Okimoto, T. Takenobu, K. Yanagi, Y. Miyata, H. Shimotani, H. Kataura, Y. Iwasa, Adv. Mater. 22, 3981–3986 (2010)

    Article  Google Scholar 

  11. J.A. Lim, J.H. Kim, L. Qiu, W.H. Lee, H.S. Lee, D.H. Kwak, K.W. Cho, Adv. Funct. Mater. 20, 3292–3297 (2010)

    Article  Google Scholar 

  12. S.B. Fuller, E.J. Wilhelm, J.M.J. Jacobson, Microelectromech. Syst 11, 54–60 (2002)

    Article  Google Scholar 

  13. C. Kim, M. Nogi, K. Suganuma, J. Micromech. Microeng. 22, 035016 (2012)

    Article  Google Scholar 

  14. C. Kim, M. Nogi, K. Suganuma, Y. Yamato, ACS Appl. Mater. Interfaces 4, 2168–2173 (2012)

    Article  Google Scholar 

  15. C. Kim, M. Nogi, K. Suganuma, Y. Saitou, J. Shirakami, RSC Adv 2, 8447–8451 (2012)

    Article  Google Scholar 

  16. T.H.J. van Osch, J. Perelaer, A.W.M. de Laat, U.S. Schubert, Adv. Mater. 20, 343–345 (2008)

    Article  Google Scholar 

  17. M. Henning, L. Ute, M. Dario, J.S. Patrick, G.K. Jan, Phys. Status Solidi A 206, 1626–1630 (2009)

    Article  Google Scholar 

  18. D.H. Youn, S.H. Kim, Y.S. Yang, S.C. Lim, S.J. Kim, S.H. Ahn, H.S. Sim, S.M. Ryu, D.W. Shin, J.B. Yoo, Appl. Phys. A-Mater. Sci. Process. 96, 933–938 (2009)

    Article  Google Scholar 

  19. D.J. Lee, J.H. Oh, H.S. Bae, Mater. Lett. 64, 1069–1072 (2010)

    Article  Google Scholar 

  20. M. Shlomo, G. Michael, T. Dana, K. Alexander, B. Isaac, M. Oded, Langmuir 21, 10264–10267 (2005)

    Article  Google Scholar 

  21. L. Michael, G. Michael, M. Oded, B. Isaac, A. Doron, M. Shlomo, ACS Nano 3, 3537–3542 (2009)

    Article  Google Scholar 

  22. D.J. Kim, S.H. Jeong, B.K. Park, J.H. Moon, Appl. Phys. Lett. 89, 264101 (2006)

    Article  Google Scholar 

  23. D.D. Robert, B. Olgica, F.D. Todd, H. Greb, R.N. Sidney, A.W. Thomas, Nature 389, 827–829 (1997)

    Article  Google Scholar 

  24. D.D. Robert, B. Olgica, F.D. Todd, H. Greg, R.N. Sidney, A.W. Thomas, Phys. Rev. E62, 756–765 (2000)

    Google Scholar 

  25. J.F. Benjamin, Langmuir 18, 60–67 (2002)

    Article  Google Scholar 

  26. B.J. de Gans, U.S. Schubert, Langmuir 20, 7789–7793 (2004)

    Article  Google Scholar 

  27. M. Ikegawa, H. Azuma, JSME Int. J. B47, 490–496 (2004)

    Article  Google Scholar 

  28. K. Ozawa, E. Nishitani, M. Doi, Jpn. J. Appl. Phys. 44, 4229–4234 (2005)

    Article  Google Scholar 

  29. J.H. Park, J.H. Moon, Langmuir 22, 3506–3513 (2006)

    Article  Google Scholar 

  30. C. Poulard, P. Damman, EPL 80, 64001 (2007)

    Article  Google Scholar 

  31. D. Soltman, V. Subramanian, Langmuir 24, 2224–2231 (2008)

    Article  Google Scholar 

  32. J.A. Lim, W.H. Lee, H.S. Lee, J.H. Lee, Y.D. Park, K. Cho, Adv. Funct. Mater. 18, 229–234 (2008)

    Article  Google Scholar 

  33. D.J. Lee, J.H. Oh, Surf. Interface Anal. 42, 1261–1265 (2010)

    Article  Google Scholar 

  34. Y. Li, C. Fu, J. Xu, J. Appl. Phys. 46, 6807–6810 (2007)

    Article  Google Scholar 

  35. C.E. Hendriks, P.J. Smith, J. Perelaer, A.M.J. van den Berg, U.S. Schubert, Adv. Funct. Mater. 18, 1031–1038 (2008)

    Article  Google Scholar 

  36. K.J. Lee, B.H. Jun, T.H. Kim, J.W. Joung, Nanotechnology 17, 2424 (2006)

    Article  Google Scholar 

  37. S. Magdassi, A. Bassa, Y. Vinetsky, A. Kamyshny, Chem. Mater. 15, 2208–2217 (2003)

    Article  Google Scholar 

  38. H.H. Lee, K.S. Chou, K.C. Huang, Nanotechnology 16, 2436–2441 (2005)

    Article  Google Scholar 

  39. J. Perelaer, P.J. Smith, D. Mager, D. Soltman, S.K. Volkman, V. Subramanian, J.G. Korvink, U.S.J. Schubert, Mater. Chem. 20, 8446–8453 (2010)

    Article  Google Scholar 

  40. A.L. Dearden, P.J. Smith, D.Y. Shin, N. Reis, B. Derby, P. O’Brien, Macromol. Rapid Commun. 26, 315–318 (2005)

    Article  Google Scholar 

  41. J.H. Oh, S.Y. Lim, J. Micromech. Microeng. 20, 015030 (2010)

    Article  Google Scholar 

  42. S.H. Lee, K.Y. Shin, J.Y. Hwang, K.T. Kang, H.S. Kang, J. Micromech. Microeng. 18, 075014 (2008)

    Article  Google Scholar 

  43. D. Tobjörk, R. Österbacka, Adv. Mater. 23, 1935–1961 (2011)

    Article  Google Scholar 

  44. R. Peng, C. Xia, X. Liu, D. Peng, G. Meng, Solid State Ionics 152, 561–565 (2002)

    Article  Google Scholar 

  45. R.N. Wenzel, Ind. Eng. Chem. 28, 988–994 (1936)

    Article  Google Scholar 

  46. W.Y. Chang, T.H. Fang, H.J. Lin, Y.T. Shen, Y.C.J. Lin, Display Technol. 5, 178–183 (2009)

    Article  Google Scholar 

  47. R. Faddoul, N. Reverdy-Bruas, J. Bourel, Microelectron. Reliab. 52, 1483–1491 (2012)

    Google Scholar 

  48. G. Zhang, P. Deng, W. Xu, Z. Yu, Adv. Mater. Res. 380, 121–124 (2012)

    Google Scholar 

  49. B.K. Park, D. Kim, S. Jeong, J. Moon, J.S. Kim, Thin Solid Films 515, 7706–7711 (2007)

    Article  Google Scholar 

  50. J. Choi, Y.J. Kim, S. Lee, S.U. Son, H.S. Ko, V.D. Nguyen, D. Byun, Appl. Phys. Lett. 93, 193508 (2008)

    Article  Google Scholar 

  51. H.C. Jung, S.H. Cho, J.W. Joung, Y.S.J. Oh, Electron. Mater. 36, 1211–1218 (2007)

    Article  Google Scholar 

  52. J. Perelaer, A.W.M. De Laat, C.E. Hendriks, U.S.J. Schubert, Mater. Chem. 18, 3209–3215 (2008)

    Article  Google Scholar 

  53. J. Perelaer, B.J. De Gans, U.S. Schubert, Adv. Mater. 18, 2101–2104 (2006)

    Article  Google Scholar 

  54. J. Perelaer, C.E. Hendriks, A.W.M. De Laat, U.S. Schubert, Nanotechnology 20, 165303 (2009)

    Article  Google Scholar 

  55. Y.S. Goo, Y.I. Lee, N. Kim, K.J. Lee, B. Yoo, S.J. Hong, J.D. Kim, Y.H. Choa, Surf. Coat. Technol. 205, S369–372 (2010)

    Article  Google Scholar 

  56. G. Tortissier, P. Ginet, B. Daunay, L. Jalabert, P. Lambert, B. Kim, H. Fujita, H. Toshiyoshi, J. Micromech. Microeng. 21, 105021 (2011)

    Article  Google Scholar 

  57. A.M.J. Van Den Berg, A.W.M. De Laat, P.J. Smith, J. Perelaer, U.S.J. Schubert, Mater. Chem. 17, 677–683 (2007)

    Article  Google Scholar 

  58. B.J. Kang, J.H. Oh, Thin Solid Films 518, 2890–2896 (2010)

    Article  Google Scholar 

  59. J. Perelaer, R. Abbel, S. Wünscher, R. Jani, T. Lammeren, U.S. Schubert, Adv. Mater. 24, 2620–2625 (2012)

    Article  Google Scholar 

  60. D.J. Lee, S.H. Park, S. Jang, H.S. Kim, J.H. Oh, Y.W. Song, J. Micromech. Microeng. 21, 125023 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaya Nogi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Nogi, M., Koga, H., Suganuma, K. (2015). Highly Conductive Ink-Jet-Printed Lines. In: Ogawa, S. (eds) Organic Electronics Materials and Devices. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55654-1_5

Download citation

Publish with us

Policies and ethics