Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 910))

Abstract

We have studied impact drag force and impact cratering mechanics thus far in this book. As a target material, dense granular beds have been principally considered. Soft impact with a loose granular target causes many intriguing phenomena, as described in the previous chapters. In this chapter, we will focus on other types of soft impact phenomena that are also related to planetary science. First, the impact of dust aggregates in a protoplanetary disk will be discussed. Dust grains coagulate to become fluffy dust aggregates. The physical properties of the aggregates are key quantities to understanding the history of planetesimal formation. Next, we will return to the discussion of dense macroscopic grains called regolith that cover the surface of various astronomical objects. Some interesting physical properties relating to the impact of dust aggregates and regolith migration will be briefly discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The scale height H scale is computed from the balance between the vertical force F z in Eq. (7.5) and the pressure gradient force as \(\varOmega _{K}^{2}z + (1/\rho _{t})dp/dz = 0\). Assuming the isothermal condition p = ρ t C s 2, the vertical density profile is computed as \(\rho _{t} \sim \exp [-(z/H_{\mathrm{scale}})^{2}]\).

  2. 2.

    \(\alpha _{\nu } = 10^{-3}\) is used to calculate the collision velocity.

  3. 3.

    Since the handling of tiny grains under a microgravity environment demands sophisticated experimental techniques, only this group has been able to perform this type of experiment.

  4. 4.

    The word monomer represents individual submicron-sized particle that compose the dust aggregate.

  5. 5.

    If two monomer sizes are different (D 1 and D 2), D i corresponds to the reduced diameter \(D_{i} = D_{1}D_{2}/(D_{1} + D_{2})\).

  6. 6.

    Note that this factor \(\mathcal{Q}\) and the quality factor Q are different.

  7. 7.

    This situation is the same as that in the case of thermal conduction in rocks.

  8. 8.

    The mean collisional lifetime T life is determined by the average period of the large impact which results in the catastrophic disruption of the body. This upper limit of the impact energy relates to the constraint (ii). Additionally, the convective velocity by the largest impact cannot exceed the escape velocity. Thus, the constraint (i) is automatically fulfilled. For the convective roll size, we temporarily assume the small roll size (\(\simeq 100D_{g}\)) on the basis of preliminary experimental observation.

  9. 9.

    To obtain this relation, we assume that the initial vertical velocity is proportional to the friction velocity.

  10. 10.

    To make the two-dimensionally spreading washboard road pattern, an extensively wide wheel is necessary. It is difficult to imagine such a situation.

  11. 11.

    To model the large-scale dune migration in a laboratory, water flow was used in the experiment. This is a type of similar modeling for geological-scale phenomena (Sect. 2.8).

References

  1. P.J. Armitage, Astrophysics of Planet Formation (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  2. A. Li, J.M. Greenberg, Astron. Astrophys. 323, 556 (1997)

    ADS  Google Scholar 

  3. G. Wurm, M. Schnaiter, Astrophys. J. 567, 370 (2002)

    Article  ADS  Google Scholar 

  4. S.V.W. Beckwith, T. Henning, Y. Nakagawa, Dust properties and assembly of large particles in protoplanetary disks, in Protostars and Planets IV (University of Arizona Press, Tucson, 2000), pp. 533–558

    Google Scholar 

  5. S.J. Weidenschilling, J.N. Cuzzi, Formation of planetesimals in the solar nebula, in Protostars and Planets III (University of Arizona Press, Tucson, 1993), pp. 1031–1060

    Google Scholar 

  6. S.J. Weidenschilling, Mon. Not. R. Astron. Soc. 180, 57 (1977)

    Article  ADS  Google Scholar 

  7. G. Wurm, J. Blum, J.E. Colwell, Icarus 151, 318 (2001)

    Article  ADS  Google Scholar 

  8. J.N. Cuzzi, R.C. Hogan, J.M. Paque, A.R. Dobrovolskis, Astrophys. J. 546, 496 (2001)

    Article  ADS  Google Scholar 

  9. S.A. Balbus, J.F. Hawley, Rev. Mod. Phys. 70, 1 (1998)

    Article  ADS  Google Scholar 

  10. J. Blum, G. Wurm, Annu. Rev. Astron. Astrophys. 46, 21 (2008)

    Article  ADS  Google Scholar 

  11. J. Blum, Microgravity Sci. Technol. 22, 517 (2010)

    Article  ADS  Google Scholar 

  12. J. Blum, Res. Astron. Astrophys. 10, 1199 (2010)

    Article  ADS  Google Scholar 

  13. C. Güttler, J. Blum, A. Zsom, C.W. Ormel, C.P. Dullemond, Astron. Astrophys. 513, A56 (2010)

    Article  Google Scholar 

  14. D. Paszun, C. Dominik, Icarus 182, 274 (2006)

    Article  ADS  Google Scholar 

  15. K. Wada, H. Tanaka, T. Suyama, H. Kimura, T. Yamamoto, Astrophys. J. 661, 320 (2007)

    Article  ADS  Google Scholar 

  16. K. Wada, H. Tanaka, T. Suyama, H. Kimura, T. Yamamoto, Astrophys. J. 677, 1296 (2008)

    Article  ADS  Google Scholar 

  17. G. Wurm, J. Blum, Icarus 132, 125 (1998)

    Article  ADS  Google Scholar 

  18. J. Blum, G. Wurm, Icarus 143, 138 (2000)

    Article  ADS  Google Scholar 

  19. M. Krause, J. Blum, Phys. Rev. Lett. 93, 021103 (2004)

    Article  ADS  Google Scholar 

  20. P. Meakin, Rev. Geophys. 29, 317 (1991)

    Article  ADS  Google Scholar 

  21. T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, J.M. Greenberg, Astron. Astrophys. 262, 315 (1992)

    ADS  Google Scholar 

  22. C. Dominik, A.G.G.M. Tielens, Philos. Mag. A 72, 783 (1995)

    Article  ADS  Google Scholar 

  23. C. Dominik, A.G.G.M. Tielens, Philos. Mag. A 73, 1279 (1996)

    Article  ADS  Google Scholar 

  24. C. Dominik, A.G.G.M. Tielens, Astrophys. J. 480, 647 (1997)

    Article  ADS  Google Scholar 

  25. K.L. Johnson, K. Kendall, A.D. Roberts, Proc. R. Soc. A 324, 301 (1971)

    Article  ADS  Google Scholar 

  26. A. Chokshi, A.G.G.M. Tielens, D. Hollenbach, Astrophys. J. 407, 806 (1993)

    Article  ADS  Google Scholar 

  27. A. Zsom, C.W. Ormel, C. Güttler, J. Blum, C.P. Dullemond, Astron. Astrophys. 513, A57 (2010)

    Article  ADS  Google Scholar 

  28. S. Okuzumi, Astrophys. J. 698, 1122 (2009)

    Article  ADS  Google Scholar 

  29. K. Wada, H. Tanaka, T. Suyama, H. Kimura, T. Yamamoto, Astrophys. J. 702, 1490 (2009)

    Article  ADS  Google Scholar 

  30. D. Paszun, C. Dominik, Astron. Astrophys. 507, 1023 (2009)

    Article  ADS  Google Scholar 

  31. K. Wada, H. Tanaka, T. Suyama, H. Kimura, T. Yamamoto, Astrophys. J. 737, 36 (2011)

    Article  ADS  Google Scholar 

  32. D. Langkowski, J. Teiser, J. Blum, Astrophys. J. 675, 764 (2008)

    Article  ADS  Google Scholar 

  33. Y. Shimaki, M. Arakawa, Icarus 221, 310 (2012)

    Article  ADS  Google Scholar 

  34. S. Okuzumi, H. Tanaka, H. Kobayashi, K. Wada, Astrophys. J. 752, 106 (2012)

    Article  ADS  Google Scholar 

  35. S. Sirono, Astrophys. J. 735, 131 (2011)

    Article  ADS  Google Scholar 

  36. S. Sirono, Astrophys. J. Lett. 733, L41 (2011)

    Article  ADS  Google Scholar 

  37. T. Kuroiwa, S. Sirono, Astrophys. J. 739, 18 (2011)

    Article  ADS  Google Scholar 

  38. Y. Shimaki, M. Arakawa, Icarus 218, 737 (2012)

    Article  ADS  Google Scholar 

  39. H.J. Melosh, Planetary Surface Processes (Cambridge University Press, Cambridge, 2011)

    Book  Google Scholar 

  40. E.M. Shoemaker, R.M. Batson, H.E. Holt, E.C. Morris, J.J. Rennilson, E.A. Whitaker, J. Geophys. Res. 74, 6081 (1969)

    Article  ADS  Google Scholar 

  41. K. Chen, J. Cole, C. Conger, J. Draskovic, M. Lohr, K. Klein, T. Scheidemantel, P. Schiffer, Nature 442, 257 (2006)

    Article  ADS  Google Scholar 

  42. T. Divoux, H. Gayvallet, J.C. Géminard, Phys. Rev. Lett. 101, 148303 (2008)

    Article  ADS  Google Scholar 

  43. T. Divoux, Pap. Phys. 2, 020006 (2010)

    Article  Google Scholar 

  44. P. Philippe, D. Bideau, EPL (Europhys. Lett.) 60, 677 (2002)

    Google Scholar 

  45. M. Delbo, G. Libourel, J. Wilkerson, N. Murdoch, P. Michel, K.T. Ramesh, C. Ganino, C. Verati, S. Marchi, Nature 508, 233 (2014)

    Article  ADS  Google Scholar 

  46. M.T. Mellon, R.L. Fergason, N.E. Putzig, The thermal intertia of the surface of Mars, in The Martian Surface: Composition, Mineralogy, and Physical Properties (Cambridge University Press, Cambridge, 2008), pp. 399–427

    Book  Google Scholar 

  47. H. Miyamoto, H. Yano, J.D. Scheeres, S. Abe, O. Barnouin-Jha, A.F. Cheng, H. Demura, R.W. Gaskell, N. Hirata, R. Ishiguro, T. Michikami, A.M. Nakamura, R. Nakamura, J. Saito, A. Sasaki, Science 316, 1011 (2007)

    Article  ADS  Google Scholar 

  48. N. Murdoch, B. Rozitis, K. Nordstrom, S.F. Green, P. Michel, T.L. de Lophem, W. Losert, Phys. Rev. Lett. 110, 018307 (2013)

    Article  ADS  Google Scholar 

  49. N. Murdoch, B. Rozitis, K. Nordstrom, S.F. Green, P. Michel, T.L. de Lophem, W. Losert, Granul. Matter 15, 129 (2013)

    Article  Google Scholar 

  50. N. Murdoch, B. Rozitis, S.F. Green, P. Michel, T.L. de Lophem, W. Losert, Mon. Not. R. Astron. Soc. 433, 506 (2013)

    Article  ADS  Google Scholar 

  51. C. Güttler, I. von Borstel, R. Schräpler, J. Blum, Phys. Rev. E 87, 044201 (2013)

    Article  ADS  Google Scholar 

  52. G. Tancredi, A. Maciel, L. Heredia, P. Richeri, S. Nesmachnow, Mon. Not. R. Astron. Soc. 420, 3368 (2012)

    Article  ADS  Google Scholar 

  53. T.M. Yamada, H. Katsuragi, Planet. Space Sci. 100, 79 (2014)

    Article  ADS  Google Scholar 

  54. P. Eshuis, D. van der Meer, M. Alam, H.J. van Gerner, K. van der Weele, D. Lohse, Phys. Rev. Lett. 104, 038001 (2010)

    Article  ADS  Google Scholar 

  55. P. Hejmady, R. Bandyopadhyay, S. Sabhapandit, A. Dhar, Phys. Rev. E 86, 050301 (2012)

    Article  ADS  Google Scholar 

  56. K.M. Aoki, T. Akiyama, Y. Maki, T. Watanabe, Phys. Rev. E 54, 874 (1996)

    Article  ADS  Google Scholar 

  57. K. Nagao, R. Okazaki, T. Nakamura, N.Y. Miura, T. Osawa, K. Bajo, S. Matsuda, M. Ebihara, T. Noguchi, A. Tsuchiyama, H. Yurimoto, M.E. Zolensky, M. Uesugi, K. Shirai, M. Abe, T. Yada, Y. Ishibashi, A. Fujimura, T. Mukai, M. Ueno, T. Okada, J. Yoshikawa, M. Kawaguchi, Science 333, 1128 (2011)

    Article  ADS  Google Scholar 

  58. M.M.M. Meier, C. Alwmark, S. Bajt, U. Böttger, H. Busemann, W. Fujiya, J. Gilmour, U. Heitmann, P. Hoppe, H.W. Hübers, F. Marone, U. Ott, S. Pavlov, U. Schade, N. Spring, M. Stampanoni, I. Weber, Forty-Fifth Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, 2014), Abstract #1247

    Google Scholar 

  59. D.P. O’Brien, R. Greenberg, Icarus 178, 179 (2005)

    Article  ADS  Google Scholar 

  60. T.M. Yamada, K. Ando, T. Morota, H. Katsuragi, Forty-Sixth Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, 2015), Abstract #1215

    Google Scholar 

  61. P.K. Kundu, I.M. Cohen, D.R. Dowling, Fluid Mechanics, 5th edn. (Academic, Waltham, 2011)

    Google Scholar 

  62. R.A. Bagnold, The Physics of Blown Sand and Desert Dunes (Methuen and Co., London, 1941)

    Google Scholar 

  63. N. Taberlet, S.W. Morris, J.N. McElwaine, Phys. Rev. Lett. 99, 068003 (2007)

    Article  ADS  Google Scholar 

  64. V. Schwämmle, H.J. Herrmann, Nature 426, 619 (2003)

    Article  ADS  Google Scholar 

  65. A. Katsuki, H. Nishimori, N. Endo, K. Taniguchi, J. Phys. Soc. Jpn. 74, 538 (2005)

    Article  ADS  Google Scholar 

  66. O. Durán, V. Schwämmle, H. Herrmann, Phys. Rev. E 72, 021308 (2005)

    Article  ADS  Google Scholar 

  67. N. Endo, K. Taniguchi, A. Katsuki, Geophys. Res. Lett. 31, L12503 (2004)

    Article  ADS  Google Scholar 

  68. P. Vermeesch, Geophys. Res. Lett. 38, L22402 (2011)

    ADS  Google Scholar 

  69. R. Greeley, J.D. Iversen, Wind as a Geological Process on Earth, Mars, Venus, and Titan (Cambridge University Press, Cambridge, 1985)

    Book  Google Scholar 

  70. N. Lancaster, Geomorphology of Desert Dunes (Routledge, London/New York, 1995)

    Book  Google Scholar 

  71. J.D. Pelletier, Quantitative Modeling of Earth Surface Processes (Cambridge University Press, Cambridge, 2008)

    Book  MATH  Google Scholar 

  72. B. Andreotti, Y. Forterre, O. Pouliquen, Granular Media (Cambridge University Press, Cambridge, 2013)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Katsuragi, H. (2016). Grains and Dust Dynamics. In: Physics of Soft Impact and Cratering. Lecture Notes in Physics, vol 910. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55648-0_7

Download citation

Publish with us

Policies and ethics