Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 910))

Abstract

In this chapter, various experiments of impact cratering performed at a laboratory scale will be reviewed. As discussed in Chap. 5, natural planetary craters have a wide variety of shapes. Very high-speed and large-scale impact events must be reproduced to fully mimic the actual planetary craters, which is evidently impossible to accomplish. Instead, low-velocity soft matter impact experiments might be helpful for understanding the morphology and fundamental processes of actual cratering on the basis of scaling concept written in Chap. 2 Moreover, a basic understanding of the cratering mechanics brings crucial and primordial knowledge to soft matter physics itself. Therefore, phenomenological studies of soft matter impacts and some of their tentative relations to the actual cratering will be exemplified in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This assumption is called Schröter’s rule .

  2. 2.

    This is natural because the lunar craters could also roughly satisfy the volume conservation. Note that, however, the lunar crater cavity is not spherical. The relation of the rim height and the cavity radius should be different in actual lunar craters.

  3. 3.

    Since both terms in Eq. (6.8) diverge at z cra = 0 (\(x = \infty \)), these values must be numerically evaluated.

  4. 4.

    Note that the sheet is very thin, and its potential energy is negligible.

  5. 5.

    Specifically, 2E targetρ t can be computed as \(\int _{V }(\nabla \varPhi _{f})^{2}dV =\int _{V }[\nabla \cdot (\varPhi _{f}\nabla \varPhi _{f}) -\varPhi _{f}\nabla ^{2}\varPhi _{f}]dV =\int _{S}\varPhi _{f}\nabla \varPhi _{f} \cdot \boldsymbol{ n}dS =\int _{S}\varPhi _{f}v_{n}dS\), where v n is the outward normal component of velocity at the surface S. Here, we use Gauss’ theorem and irrotational condition ∇2 Φ f  = 0.

  6. 6.

    This jetting is different from the jet induced by the cavity collapse. The jet by cavity collapse is discussed in the next section.

  7. 7.

    Indeed, the range of container diameter varies within a relatively narrow regime (D con ≤ 6D i ).

  8. 8.

    Water saturation indicates the fraction of water in the pore space expressed by volume ratio (Eq. (4.36)).

  9. 9.

    \(\varTheta (x) = 0\) for (x < 0) and 1 for (x > 0).

  10. 10.

    This assumption is important for the scaling. Another scaling relation can be obtained by a different definition of viscous dissipation. This point will be discussed later in the next section (see Eqs. (6.78) and (6.79)).

  11. 11.

    The typical initial packing fraction is ϕ 0 = 0. 44. Furthermore, the target is considerably compressed by the impact.

  12. 12.

    Note that the axes in the phase diagram of Fig. 6.13 are on logarithmic scales.

  13. 13.

    Because the capillary effect becomes dominant in the small-scale regime (Sect. 2.8.5), its effect is pronounced in a small-bead bed.

  14. 14.

    See Eq. (3.28). Note that the kinematic viscosity ηρ i corresponds to the diffusion coefficient K d .

  15. 15.

    The radius of curvature is defined by \(R_{c} = ds/d\theta\), where \(ds = \sqrt{(dx)^{2 } + (dz)^{2}}\) is an arc length and \(d\theta\) is the corresponding arc angle. The relation \(d\theta = (d^{2}z/dx^{2})dx/[1 + (dz/dx)^{2}]\) is obtained from the geometrical condition \(\tan (\theta +d\theta ) = dz/dx + (d/dx)(dz/dx)dx\) (using \(d\theta \ll 1\), \(\tan \theta = dz/dx\) and \(\tan (\theta +d\theta ) = (\tan \theta +\tan d\theta )/(1 -\tan \theta \tan d\theta )\)). Equation (6.71) is computed from these relations.

  16. 16.

    This criterion is equivalent to the condition that the viscosity is negligible.

  17. 17.

    The assumption \(D_{c} \simeq 2D_{i}\) is not actually very evident in astronomical impacts. While we assume this approximation herein, another constraint is necessary to obtain the truly closed form.

References

  1. O.G. Engel, J. Appl. Phys. 37, 1798 (1966)

    Article  ADS  Google Scholar 

  2. O.G. Engel, J. Appl. Phys. 38, 3935 (1967)

    Article  ADS  Google Scholar 

  3. A. Prosperetti, H.N. Oguz, Ann. Rev. Fluid Mech. 25, 577 (1993)

    Article  ADS  Google Scholar 

  4. H. Lamb, Hydrodynamics, 6th edn. (Cambridge University Press, New York, 1993)

    MATH  Google Scholar 

  5. I.V. Roisman, E. Berberovic, C. Tropea, Phys. Fluids 21, 052103 (2009)

    Article  ADS  Google Scholar 

  6. E. Berberović, N.P. van Hinsberg, S. Jakirlić, I.V. Roisman, C. Tropea, Phys. Rev. E 79, 036306 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Bisighini, G.E. Cossali, C. Tropea, I.V. Roisman, Phys. Rev. E 82, 036319 (2010)

    Article  ADS  Google Scholar 

  8. H. Tabuteau, D. Sikorski, S.J. de Vet, J.R. de Bruyn, Phys. Rev. E 84, 031403 (2011)

    Article  ADS  Google Scholar 

  9. J.S. Uehara, M.A. Ambroso, R.P. Ojha, D.J. Durian, Phys. Rev. Lett. 90, 194301 (2003)

    Article  ADS  Google Scholar 

  10. J.S. Uehara, M.A. Ambroso, R.P. Ojha, D.J. Durian, Phys. Rev. Lett. 91, 149902 (2003)

    Article  ADS  Google Scholar 

  11. A.M. Walsh, K.E. Holloway, P. Habdas, J.R. de Bruyn, Phys. Rev. Lett. 91, 104301 (2003)

    Article  ADS  Google Scholar 

  12. S.J. de Vet, J.R. de Bruyn, Phys. Rev. E 76, 041306 (2007)

    Article  ADS  Google Scholar 

  13. K.A. Holsapple, R.M. Schmidt, J. Geophys. Res. Solid Earth 87(B3), 1849 (1982)

    Article  Google Scholar 

  14. K.A. Holsapple, Annu. Rev. Earth Planet. Sci. 21, 333 (1993)

    Article  ADS  Google Scholar 

  15. R.M. Schmidt, in Eleventh Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, 1980), Abstract #1351

    Google Scholar 

  16. X.J. Zheng, Z.T. Wang, Z.G. Qiu, Eur. Phys. J. E 13, 321 (2004)

    Article  Google Scholar 

  17. S. Deboeuf, P. Gondret, M. Rabaud, Phys. Rev. E 79, 041306 (2009)

    Article  ADS  Google Scholar 

  18. M.J. Cintala, L. Berthoud, F. Hörz, Meteorit. Planet. Sci. 34, 605 (1999)

    Article  ADS  Google Scholar 

  19. J.L.B. Anderson, P.H. Schultz, J.T. Heineck, Meteorit. Planet. Sci. 39, 303 (2004)

    Article  ADS  Google Scholar 

  20. J.L.B. Anderson, P.H. Schultz, in Thirty-sixth Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, 2005), Abstract #1773

    Google Scholar 

  21. J.F. Boudet, Y. Amarouchene, H. Kellay, Phys. Rev. Lett. 96, 158001 (2006)

    Article  ADS  Google Scholar 

  22. J.O. Marston, E.Q. Li, S.T. Thoroddsen, J. Fluid Mech. 704, 5 (2012)

    Article  MATH  ADS  Google Scholar 

  23. D.A. Weiss, A.L. Yarin, J. Fluid Mech. 385, 229 (1999)

    Article  MATH  ADS  Google Scholar 

  24. G. Caballero-Robledo, K. Kelly, T. Homan, J. Weijs, D. Meer, D. Lohse, Granul. Matter 14, 179 (2012)

    Article  Google Scholar 

  25. J.R. Royer, E.I. Corwin, B. Conyers, A. Flior, M.L. Rivers, P.J. Eng, H.M. Jaeger, Phys. Rev. E 78, 011305 (2008)

    Article  ADS  Google Scholar 

  26. A.M. Worthington, R.S. Cole, Philos. Trans. R. Soc. A 189, 137 (1897)

    Article  MATH  ADS  Google Scholar 

  27. A.M. Worthington, R.S. Cole, Philos. Trans. R. Soc. A 194, 175 (1900)

    Article  ADS  Google Scholar 

  28. A.M. Worthington, A Study of Splashes (Longman and Green, London, 1908)

    Google Scholar 

  29. A. Ogawa, K. Utsuno, M. Mutou, S. Kouzen, Y. Shimotake, Y. Satou, Part. Sci. Technol. 24, 181 (2006)

    Article  Google Scholar 

  30. M.A. Cook, K.S. Mortensen, J. Appl. Phys. 38, 5125 (1967)

    Article  ADS  Google Scholar 

  31. S.T. Thoroddsen, A.Q. Shen, Phys. Fluids 13, 4 (2001)

    Article  ADS  Google Scholar 

  32. D. Lohse, R. Rauhé, R. Bergmann, D. van der Meer, Nature 432, 689 (2001)

    Article  ADS  Google Scholar 

  33. D. Lohse, R. Bergmann, R. Mikkelsen, C. Zeilstra, D. van der Meer, M. Versluis, K. van der Weele, M. van der Hoef, H. Kuipers, Phys. Rev. Lett. 93, 198003 (2004)

    Article  ADS  Google Scholar 

  34. H.N. Og̃uz, A. Prosperetti, J. Fluid Mech. 257, 111 (1993)

    Google Scholar 

  35. J.R. Royer, E.I. Corwin, A. Flior, M.L. Cordero, M.L. Rivers, P.J. Eng, H.M. Jaeger, Nat. Phys. 1, 164 (2005)

    Article  Google Scholar 

  36. G. Caballero, R. Bergmann, D. van der Meer, A. Prosperetti, D. Lohse, Phys. Rev. Lett. 99, 018001 (2007)

    Article  ADS  Google Scholar 

  37. S. von Kann, S. Joubaud, G.A. Caballero-Robledo, D. Lohse, D. van der Meer, Phys. Rev. E 81, 041306 (2010)

    Article  ADS  Google Scholar 

  38. J.O. Marston, J.P.K. Seville, Y.V. Cheun, A. Ingram, S.P. Decent, M.J.H. Simmons, Phys. Fluids 20, 023301 (2008)

    Article  ADS  Google Scholar 

  39. J.O. Marston, M.M. Mansoor, S.T. Thoroddsen, Phys. Rev. E 88, 010201 (2013)

    Article  ADS  Google Scholar 

  40. R. Rioboo, M. Marengo, C. Tropea, Exp. Fluids 33, 112 (2002)

    Article  Google Scholar 

  41. J. Eggers, M.A. Fontelos, C. Josserand, S. Zaleski, Phys. Fluids 22, 062101 (2010)

    Article  ADS  Google Scholar 

  42. N. Mitarai, F. Nori, Adv. Phys. 55, 1 (2006)

    Article  ADS  Google Scholar 

  43. S. Herminghaus, Wet Granular Matter (World Scientific, Singapore, 2013)

    Book  Google Scholar 

  44. I.R. Peters, Q. Xu, H.M. Jaeger, Phys. Rev. Lett. 111, 028301 (2013)

    Article  ADS  Google Scholar 

  45. F. Pacheco-Vázquez, J.C. Ruiz-Suárez, Phys. Rev. Lett. 107, 218001 (2011)

    Article  ADS  Google Scholar 

  46. R. Bartali, G.M. Rodríguez-Lin̂án, Y. Nahmad-Molinari, D. Sarocchi, J.C. Ruiz-Suárez, arXiv:1302.0259v2 (2013)

    Google Scholar 

  47. Y. Amarouchene, J.F. Boudet, H. Kellay, Phys. Rev. Lett. 86, 4286 (2001)

    Article  ADS  Google Scholar 

  48. D. Scheeres, C. Hartzell, P. Sánchez, M. Swift, Icarus 210, 968 (2010)

    Article  ADS  Google Scholar 

  49. K.R. Housen, K.A. Holsapple, Icarus 163, 102 (2003)

    Article  ADS  Google Scholar 

  50. H.G. Wilshire, K.A. Howard, Science 162, 258 (1968)

    Article  ADS  Google Scholar 

  51. J. González-Gutiérrez, J.L. Carrillo-Estrada, J.C. Ruiz-Suárez, Sci. Rep. 4, 6762 (2014)

    Article  ADS  Google Scholar 

  52. F. Pacheco-Vázquez, J.C. Ruiz-Suárez, Nat. Commun. 1, 123 (2010)

    Article  ADS  Google Scholar 

  53. J.M. Solano-Altamirano, G.A. Caballero-Robledo, F. Pacheco-Vázquez, V. Kamphorst, J.C. Ruiz-Suárez, Phys. Rev. E 88, 032206 (2013)

    Article  ADS  Google Scholar 

  54. E.L. Nelson, H. Katsuragi, P. Mayor, D.J. Durian, Phys. Rev. Lett. 101, 068001 (2008)

    Article  ADS  Google Scholar 

  55. C. Clanet, C. Béguin, D. Richard, D. Quéré, J. Fluid Mech. 517, 199 (2004)

    Article  MATH  ADS  Google Scholar 

  56. Y. Renardy, S. Popinet, L. Duchmin, M. Renardy, S. Zaleski, C. Josserand, M.A. Drumright-Clarke, D. Richard, C. Clanet, D. Quéré, J. Fluid Mech. 484, 69 (2003)

    Article  MATH  ADS  Google Scholar 

  57. A.L. Biance, F. Chevy, C. Clanet, G. Lagubeau, D. Quéré, J. Fluid Mech. 554, 47 (2006)

    Article  MATH  ADS  Google Scholar 

  58. K. Okumura, F. Chevy, D. Richard, D. Quéré, C. Clanet, EPL (Europhys. Lett.) 62, 237 (2003)

    Google Scholar 

  59. D. Richard, C. Clanet, D. Quere, Nature 417, 811 (2002)

    Article  ADS  Google Scholar 

  60. J. Duran, Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials (Springer, New York, 2000)

    Book  Google Scholar 

  61. L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Pergamon, New York, 1986)

    MATH  Google Scholar 

  62. D. Richard, D. Quéré, EPL (Europhys. Lett.) 50, 769 (2000)

    Google Scholar 

  63. H. Katsuragi, Phys. Rev. Lett. 104, 218001 (2010)

    Article  ADS  Google Scholar 

  64. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827 (1997)

    Article  ADS  Google Scholar 

  65. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Phys. Rev. E 62, 756 (2000)

    Article  ADS  Google Scholar 

  66. G. Delon, D. Terwagne, S. Dorbolo, N. Vandewalle, H. Caps, Phys. Rev. E 84, 046320 (2011)

    Article  ADS  Google Scholar 

  67. H. Katsuragi, J. Fluid Mech. 675, 552 (2011)

    Article  MATH  ADS  Google Scholar 

  68. E. Nefzaoui, O. Skurtys, Exp. Therm. Fluid Sci. 41, 43 (2012)

    Article  Google Scholar 

  69. J.O. Marston, S.T. Thoroddsen, W.K. Ng, R.B.H. Tan, Powder Tech. 203, 223 (2010)

    Article  Google Scholar 

  70. J.O. Marston, Y. Zhu, I.U. Vakarelski, S.T. Thoroddsen, Powder Tech. 228, 424 (2012)

    Article  Google Scholar 

  71. R. Zhao, Q. Zhang, H. Tjugito, X. Cheng, PNAS 112, 342 (2015)

    Article  ADS  Google Scholar 

  72. R.M. Schmidt, K.R. Housen, Int. J. Impact Eng. 5, 543 (1987). Hypervelocity Impact Proceedings of the 1986 Symposium

    Google Scholar 

  73. E.W. Washburn, Phys. Rev. 17, 273 (1921)

    Article  ADS  Google Scholar 

  74. K.P. Hapgood, J.D. Litster, S.R. Biggs, T. Howes, J. Colloid Interface Sci. 253, 353 (2002)

    Article  Google Scholar 

  75. K.P. Hapgood, J.D. Litster, R. Smith, AIChE J. 49, 350 (2003)

    Article  Google Scholar 

  76. E.J. Long, G.K. Hargrave, J.R. Cooper, B.G.B. Kitchener, A.J. Parsons, C.J.M. Hewett, J. Wainwright, Phys. Rev. E 89, 032201 (2014)

    Article  ADS  Google Scholar 

  77. S.M. Iveson, J.D. Litster, AIChE J. 44, 1510 (1998)

    Article  Google Scholar 

  78. J. Litster, K. Hapgood, J. Michaels, A. Sims, M. Roberts, S. Kameneni, T. Hsu, Powder Tech. 114, 32 (2001)

    Article  Google Scholar 

  79. H.N. Emady, D. Kayrak-Talay, W.C. Schwerin, J.D. Litster, Powder Tech. 212, 69 (2011)

    Article  Google Scholar 

  80. H.N. Emady, D. Kayrak-Talay, J.D. Litster, AIChE J. 59, 96 (2013)

    Article  Google Scholar 

  81. A.L. Yarin, Ann. Rev. Fluid Mech. 38, 159 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  82. C. Clanet, Ann. Rev. Fluid Mech. 39, 469 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  83. H. Marmanis, S.T. Thoroddsen, Phys. Fluids 8, 1344 (1996)

    Article  ADS  Google Scholar 

  84. S.T. Thoroddsen, J. Sakakibara, Phys. Fluids 10, 1359 (1998)

    Article  ADS  Google Scholar 

  85. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, New York, 1961)

    MATH  Google Scholar 

  86. A.R. Piriz, O.D. Cortázar, J.J. López Cela, N.A. Tahir, Am. J. Phys. 74, 1095 (2006)

    Article  ADS  Google Scholar 

  87. A. Bret, Laser Part. Beams 29, 255 (2011)

    Article  Google Scholar 

  88. R.F. Allen, J. Colloid Interface Sci. 51, 350 (1975)

    Article  Google Scholar 

  89. C. Mundo, M. Sommerfeld, C. Tropea, Int. J. Multiphase Flow 21, 151 (1995)

    Article  MATH  Google Scholar 

  90. M. Pasandideh-Fard, Y.M. Qiao, S. Chandra, J. Mostaghimi, Phys. Fluids 8, 650 (1996)

    Article  ADS  Google Scholar 

  91. R. Bhola, S. Chandra, J. Mater. Sci. 34, 4883 (1999)

    Article  ADS  Google Scholar 

  92. A.N. Lembach, H.B. Tan, I.V. Roisman, T. Gambaryan-Roisman, Y. Zhang, C. Tropea, A.L. Yarin, Langmuir 26, 9516 (2010)

    Article  Google Scholar 

  93. J. Blum, R. Schräpler, Phys. Rev. Lett. 93, 115503 (2004)

    Article  ADS  Google Scholar 

  94. H. Katsuragi, EPJ Web of Conferences 92, 02032 (2015)

    Article  Google Scholar 

  95. L. Xu, W.W. Zhang, S.R. Nagel, Phys. Rev. Lett. 94, 184505 (2005)

    Article  ADS  Google Scholar 

  96. J. Lampe, R. DiLalla, J. Grimaldi, J.P. Rothstein, J. Non-Newton. Fluid Mech. 125, 11 (2005)

    Article  Google Scholar 

  97. S. Pregent, S. Adams, M.F. Butler, T.A. Waigh, J. Colloid Interface Sci. 331, 163 (2009)

    Article  Google Scholar 

  98. M. Tomé, S. McKee, K. Walters, J. Non-Newton. Fluid Mech. 165, 1258 (2010)

    Article  MATH  Google Scholar 

  99. C. Duez, C. Ybert, C. Clanet, L. Bocquet, Nat. Phys. 3, 180 (2007)

    Article  Google Scholar 

  100. G. Juarez, T. Gastopoulos, Y. Zhang, M.L. Siegel, P.E. Arratia, Phys. Rev. E 85, 026319 (2012)

    Article  ADS  Google Scholar 

  101. D.E. Gault, R. Greeley, Icarus 34, 486 (1978)

    Article  ADS  Google Scholar 

  102. M. Manga, A. Patel, J. Dufek, E.S. Kite, Geophys. Res. Lett. 39, L01202 (2012)

    Article  ADS  Google Scholar 

  103. S.W. Squyres, O. Aharonson, B. Clark, B.A. Cohen, L. Crumpler, P.A. de Souza, W.H. Farrand, R. Gellert, J. Grant, J.P. Grotzinger, A.F.C. Haldemann, J.R. Johnson, G. Klingelhöfer, K.W. Lewis, R. Li, T. McCoy, A.S. McEwen, H.Y. McSween, D.W. Ming, J.M. Moore, R.V. Morris, T.J. Parker, J.W. Rice, S. Ruff, M. Schmidt, C. Schröder, L.A. Soderblom, A. Yen, Science 316, 738 (2007)

    Article  ADS  Google Scholar 

  104. S.P.D. Birch, M. Manga, B. Delbridge, M. Chamberlain, Phys. Rev. E 90, 032208 (2014)

    Article  ADS  Google Scholar 

  105. H. Takita, I. Sumita, Phys. Rev. E 88, 022203 (2013)

    Article  Google Scholar 

  106. H. Kellay, EPL (Europhys. Lett.) 71, 400 (2005)

    Google Scholar 

  107. R.J. Munro, N. Bethke, S.B. Dalziel, Phys. Fluids 21, 046601 (2009)

    Article  ADS  Google Scholar 

  108. N. Masuda, J. Yoshida, B. Ito, T. Furuya, O. Sano, Fluid Dyn. Res. 44, 015501 (2012)

    Article  ADS  Google Scholar 

  109. J. Yoshida, N. Masuda, B. Ito, T. Furuya, O. Sano, Fluid Dyn. Res. 44, 015502 (2012)

    Article  ADS  Google Scholar 

  110. P. Metzger, C. Immer, C. Donahue, B. Vu, R. Latta, M. Deyo-Svendsen, J. Aerosp. Eng. 22, 24 (2009)

    Article  Google Scholar 

  111. P.T. Metzger, R.C.L. III, J.M. Schuler, C.D. Immer, arXiv:0905.4851 (2009). Powders and Grains 2009, Golden, Colorado, USA

    Google Scholar 

  112. A.H. Clark, R.P. Behringer, Granul. Matter 16, 433 (2014)

    Article  Google Scholar 

  113. J.C. Ruiz-Suárez, Rep. Prog. Phys. 76, 066601 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Katsuragi, H. (2016). Soft Impact Cratering. In: Physics of Soft Impact and Cratering. Lecture Notes in Physics, vol 910. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55648-0_6

Download citation

Publish with us

Policies and ethics