Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 910))

Abstract

Ever since Galileo Galilei observed that the lunar surface is rough, continuous efforts have been devoted to understanding the reason for this roughness. Today, we have access to the detailed structure of the surface terrain of the moon, as shown in Fig. 1.1. A lot of circular structures called craters appear almost all over the surface: these pits are evidence of ancient impacts. Numerous astronomical objects have impacted the moon and have left craters. Astronomical impacts have been one of the most important and ubiquitous processes since the formation of the solar system. Thus, an in-depth understanding of impact cratering is a necessary key to shedding light on the history of the solar system. However, a fundamental understanding of this concept remains in development mainly because the physical basis for impact phenomena remains in its infancy. Moreover, the actual planetary-related phenomena are very complex processes. Therefore, various approaches in addition to the physics of impact would also be necessary to fully explain the entire phenomenology of planetary impacts. The physics of impact is only a part of these various approaches. Nevertheless, many unsolved problems remain even in the very fundamental physics of impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The strength of bulk granular matter is considerably weaker than that of usual rocks. Thus, granular impact usually models the gravity-dominant regime rather than the strength-dominant regime. Gravity is most likely essential even in the microgravity condition. Under a microgravity environment, the cohesive force among grains could be crucial.

  2. 2.

    The grain diameter should be greater than the sub-millimeter scale to neglect surface effect under the Earth gravity.

  3. 3.

    For equilibrium thermodynamics, statistical mechanics successfully plays this role.

  4. 4.

    Kinetic theory has contributed to describe dilute granular gas dynamics.

  5. 5.

    Another possible way to study such large-scale and extreme-environment phenomena is the theoretical or numerical approach. Because the focus of this book is primarily experimental studies, the similarity law is mainly considered.

References

  1. H.J. Melosh, Impact Cratering (Oxford University Press, New York, 1989)

    Google Scholar 

  2. G.R. Osinski, E. Pierazzo (eds.), Impact Cratering: Processes and Products (Wiley-Blackwell, Hoboken, 2013)

    Google Scholar 

  3. H.M. Jaeger, S.R. Nagel, R.P. Behringer, Rev. Mod. Phys. 68, 1259 (1996)

    Article  ADS  Google Scholar 

  4. J.M. Ottino, D.V. Khakhar, Annu. Rev. Fluid Mech. 32, 55 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  5. I.S. Aranson, L.S. Tsimring, Rev. Mod. Phys. 78, 641 (2006)

    Article  ADS  Google Scholar 

  6. S. Luding, Nonlinearity 22, R101 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. G. Seiden, P.J. Thomas, Rev. Mod. Phys. 83, 1323 (2011)

    Article  ADS  Google Scholar 

  8. H. Caps, R. Michel, N. Lecocq, N. Vandewalle, Physica A 326, 313 (2003)

    Article  ADS  Google Scholar 

  9. S. Inagaki, K. Yoshikawa, Phys. Rev. Lett. 105, 118001 (2010)

    Article  ADS  Google Scholar 

  10. I. Zuriguel, J. Gray, J. Peixinho, T. Mullin, Phys. Rev. E 73, 061302 (2006)

    Article  ADS  Google Scholar 

  11. H.A. Makse, S. Havlin, P.R. King, H.E. Stanley, Nature 386, 379 (1997)

    Article  ADS  Google Scholar 

  12. H.A. Makse, R.C. Ball, H.E. Stanley, S. Warr, Phys. Rev. E 58, 3357 (1998)

    Article  ADS  Google Scholar 

  13. M. Shimokawa, S. Ohta, Phys. Rev. E 77, 011305 (2008)

    Article  ADS  Google Scholar 

  14. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, New York, 1961)

    MATH  Google Scholar 

  15. J.J. Hester, Annu. Rev. Astron. Astrophys. 46, 127 (2008)

    Article  ADS  Google Scholar 

  16. J.L. Vinningland, O. Johnsen, E.G. Flekkøy, R. Toussaint, K.J. Måløy, Phys. Rev. Lett. 99, 048001 (2007)

    Article  ADS  Google Scholar 

  17. J.R. Royer, D.J. Evans, Q.G. Loreto Oyarte, E. Kapit, M.E. Möbius, S.R. Waitukaitis, H.M. Jaeger, Nature 459, 1110 (2009)

    Article  ADS  Google Scholar 

  18. G. Prado, Y. Amarouchene, H. Kellay, Phys. Rev. Lett. 106, 198001 (2011)

    Article  ADS  Google Scholar 

  19. X. Cheng, L. Xu, A. Patterson, H.M. Jaeger, S.R. Nagel, Nat. Phys. 4, 234 (2008)

    Article  Google Scholar 

  20. D.J. Goldfarb, B.J. Glasser, T. Shinbrot, Nature 415, 302 (2002)

    Article  ADS  Google Scholar 

  21. S.L. Conway, T. Shinbrot, B.J. Glasser, Nature 431, 433 (2004)

    Article  ADS  Google Scholar 

  22. F. Melo, P.B. Umbanhowar, H.L. Swinney, Phys. Rev. Lett. 75, 3838 (1995)

    Article  ADS  Google Scholar 

  23. P.B. Umbanhowar, F. Melo, H.L. Swinney, Nature 382, 793 (1996)

    Article  ADS  Google Scholar 

  24. R.M. Nedderman, Statistics and Kinematics of Granular Materials (Cambridge University Press, New York, 1992)

    Book  Google Scholar 

  25. N.V. Brilliantov, T. Pöschel, Kinetic Theory of Granular Gases (Oxford University Press, New York, 2004)

    Book  MATH  Google Scholar 

  26. A. Mehta, Granular Physics (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  27. K.K. Rao, P.R. Nott, An Introduction to Granular Flow (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  28. B. Andreotti, Y. Forterre, O. Pouliquen, Granular Media (Cambridge University Press, Cambridge, 2013)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Katsuragi, H. (2016). Introduction. In: Physics of Soft Impact and Cratering. Lecture Notes in Physics, vol 910. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55648-0_1

Download citation

Publish with us

Policies and ethics