• Hiroaki Katsuragi
Part of the Lecture Notes in Physics book series (LNP, volume 910)


Ever since Galileo Galilei observed that the lunar surface is rough, continuous efforts have been devoted to understanding the reason for this roughness. Today, we have access to the detailed structure of the surface terrain of the moon, as shown in Fig. 1.1. A lot of circular structures called craters appear almost all over the surface: these pits are evidence of ancient impacts. Numerous astronomical objects have impacted the moon and have left craters. Astronomical impacts have been one of the most important and ubiquitous processes since the formation of the solar system. Thus, an in-depth understanding of impact cratering is a necessary key to shedding light on the history of the solar system. However, a fundamental understanding of this concept remains in development mainly because the physical basis for impact phenomena remains in its infancy. Moreover, the actual planetary-related phenomena are very complex processes. Therefore, various approaches in addition to the physics of impact would also be necessary to fully explain the entire phenomenology of planetary impacts. The physics of impact is only a part of these various approaches. Nevertheless, many unsolved problems remain even in the very fundamental physics of impact.


Drag Force Granular Matter Dimensional Analysis Taylor Vortex Impact Phenomenon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H.J. Melosh, Impact Cratering (Oxford University Press, New York, 1989)Google Scholar
  2. 2.
    G.R. Osinski, E. Pierazzo (eds.), Impact Cratering: Processes and Products (Wiley-Blackwell, Hoboken, 2013)Google Scholar
  3. 3.
    H.M. Jaeger, S.R. Nagel, R.P. Behringer, Rev. Mod. Phys. 68, 1259 (1996)CrossRefADSGoogle Scholar
  4. 4.
    J.M. Ottino, D.V. Khakhar, Annu. Rev. Fluid Mech. 32, 55 (2000)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    I.S. Aranson, L.S. Tsimring, Rev. Mod. Phys. 78, 641 (2006)CrossRefADSGoogle Scholar
  6. 6.
    S. Luding, Nonlinearity 22, R101 (2009)MATHMathSciNetCrossRefADSGoogle Scholar
  7. 7.
    G. Seiden, P.J. Thomas, Rev. Mod. Phys. 83, 1323 (2011)CrossRefADSGoogle Scholar
  8. 8.
    H. Caps, R. Michel, N. Lecocq, N. Vandewalle, Physica A 326, 313 (2003)CrossRefADSGoogle Scholar
  9. 9.
    S. Inagaki, K. Yoshikawa, Phys. Rev. Lett. 105, 118001 (2010)CrossRefADSGoogle Scholar
  10. 10.
    I. Zuriguel, J. Gray, J. Peixinho, T. Mullin, Phys. Rev. E 73, 061302 (2006)CrossRefADSGoogle Scholar
  11. 11.
    H.A. Makse, S. Havlin, P.R. King, H.E. Stanley, Nature 386, 379 (1997)CrossRefADSGoogle Scholar
  12. 12.
    H.A. Makse, R.C. Ball, H.E. Stanley, S. Warr, Phys. Rev. E 58, 3357 (1998)CrossRefADSGoogle Scholar
  13. 13.
    M. Shimokawa, S. Ohta, Phys. Rev. E 77, 011305 (2008)CrossRefADSGoogle Scholar
  14. 14.
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, New York, 1961)MATHGoogle Scholar
  15. 15.
    J.J. Hester, Annu. Rev. Astron. Astrophys. 46, 127 (2008)CrossRefADSGoogle Scholar
  16. 16.
    J.L. Vinningland, O. Johnsen, E.G. Flekkøy, R. Toussaint, K.J. Måløy, Phys. Rev. Lett. 99, 048001 (2007)CrossRefADSGoogle Scholar
  17. 17.
    J.R. Royer, D.J. Evans, Q.G. Loreto Oyarte, E. Kapit, M.E. Möbius, S.R. Waitukaitis, H.M. Jaeger, Nature 459, 1110 (2009)CrossRefADSGoogle Scholar
  18. 18.
    G. Prado, Y. Amarouchene, H. Kellay, Phys. Rev. Lett. 106, 198001 (2011)CrossRefADSGoogle Scholar
  19. 19.
    X. Cheng, L. Xu, A. Patterson, H.M. Jaeger, S.R. Nagel, Nat. Phys. 4, 234 (2008)CrossRefGoogle Scholar
  20. 20.
    D.J. Goldfarb, B.J. Glasser, T. Shinbrot, Nature 415, 302 (2002)CrossRefADSGoogle Scholar
  21. 21.
    S.L. Conway, T. Shinbrot, B.J. Glasser, Nature 431, 433 (2004)CrossRefADSGoogle Scholar
  22. 22.
    F. Melo, P.B. Umbanhowar, H.L. Swinney, Phys. Rev. Lett. 75, 3838 (1995)CrossRefADSGoogle Scholar
  23. 23.
    P.B. Umbanhowar, F. Melo, H.L. Swinney, Nature 382, 793 (1996)CrossRefADSGoogle Scholar
  24. 24.
    R.M. Nedderman, Statistics and Kinematics of Granular Materials (Cambridge University Press, New York, 1992)CrossRefGoogle Scholar
  25. 25.
    N.V. Brilliantov, T. Pöschel, Kinetic Theory of Granular Gases (Oxford University Press, New York, 2004)MATHCrossRefGoogle Scholar
  26. 26.
    A. Mehta, Granular Physics (Cambridge University Press, Cambridge, 2007)MATHCrossRefGoogle Scholar
  27. 27.
    K.K. Rao, P.R. Nott, An Introduction to Granular Flow (Cambridge University Press, Cambridge, 2008)CrossRefGoogle Scholar
  28. 28.
    B. Andreotti, Y. Forterre, O. Pouliquen, Granular Media (Cambridge University Press, Cambridge, 2013)CrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Hiroaki Katsuragi
    • 1
  1. 1.Department of Earth and Environmental SciencesNagoya UniversityNagoyaJapan

Personalised recommendations