Backward Induction

  • Takako Fujiwara-Greve
Part of the Monographs in Mathematical Economics book series (MOME, volume 1)


Extensive-form games are defined, and an equilibrium concept through backward induction is introduced for games with perfect information.


Nash Equilibrium Mixed Strategy Pure Strategy Terminal Node Behavioral Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Asheim G (2006) The consistent preferences approach to deductive reasoning in games. Springer, DordrechtMATHCrossRefGoogle Scholar
  2. 2.
    Aumann R (1964) Mixed and behavior strategies in infinite extensive games. In: Dresher, Shapley, Tucker (eds) Advances in game theory, annals of mathematic studies, vol 52. Princeton University Press, Princeton, pp 627–650Google Scholar
  3. 3.
    Aumann R (1987) Correlated Equilibrium as an expression of Bayesian rationality. Econometrica 55(1):1–18MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Brandenburger A (2007) The power of paradox: some recent developments in interactive epistemology. Int J Game Theory 35(4):465–492MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Coase R (1972) Durability and monopoly. J Law Econ 15(1):143–149CrossRefGoogle Scholar
  6. 6.
    Cournot A (1838) Recherches sur les Principes Mathèmatiques de la Théorie des Richesses (Researches into the Mathematical Principles of the Theory of Wealth). Hachette, Paris (English translation, 1897.)Google Scholar
  7. 7.
    Fudenberg D, Tirole J (1991) Game theory. MIT Press, CambridgeGoogle Scholar
  8. 8.
    Gibbons R (1992) Game theory for applied economists. Princeton University Press, PrincetonGoogle Scholar
  9. 9.
    Gul F, Sonnenschein H, Wilson R (1986) Foundations of dynamic monopoly and the coase conjecture. J Econ Theory 39(1):155–190MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Kreps D (1990) A course in microeconomic theory. Princeton University Press, PrincetonGoogle Scholar
  11. 11.
    Kreps D, Wilson R (1982) Sequential equilibrium. Econometrica 50(4):863–894MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Kuhn H (1953) Extensive games and the problem of information. In: Kuhn, Tucker (eds) Contributions to the theory of games, vol 2. Princeton University Press, Princeton, pp 193–216Google Scholar
  13. 13.
    Osborne M, Rubinstein A (1990) Bargaining and markets. Academic Press, San DiegoMATHGoogle Scholar
  14. 14.
    Piccione M, Rubinstein A (1997) On the interpretation of decision problems with imperfect recall. Games Econ Behav 20(1):3–24MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Rosenthal R (1981) Games of perfect information, predatory pricing and the chain-store paradox. J Econ Theory 25(1):92–100MATHCrossRefGoogle Scholar
  16. 16.
    Rubinstein A (1982) Perfect equilibrium in a bargaining model. Econometrica 50(1):97–109MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Selten R (1965) Spieltheoretische Behandlung eines Oligopolmodells mit Nachfrageträgheit. Zeitschrift für die gesamte Staatswissenschaft 121:301–324, 667–689Google Scholar
  18. 18.
    Selten R (1975) Reexamination of the perfectness concept for equilibrium points in extensive games. Int J Game Theory 4(1):25–55MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Selten R (1978) The chain store paradox. Theory Decis 9(2):127–159MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Shaked A, Sutton J (1984) Involuntary unemployment as a perfect equilibrium in a bargaining model. Econometrica 52(6):1351–1364MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    von Stackelberg H (1934) Marktform und Gleichgewicht (Market Structure and Equilibrium). Springer, Vienna (English translation, 2011.)Google Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Department of EconomicsKeio UniversityMinato-kuJapan

Personalised recommendations