Skip to main content

On the Resilience of Sociotechnical Systems

  • Chapter
  • First Online:
Book cover Systemic Design

Part of the book series: Translational Systems Sciences ((TSS,volume 8))

  • 1609 Accesses

Abstract

When designing or redesigning sociotechnical systems, it is often required that those systems be more “resilient’’ as a result. However, exactly what is meant by resilience in these contexts is unclear. To design resilient systems, we must first be able to answer a number of questions, including: Should a resilient system change to accommodate influences or stay the same? If the system changes, where should this change take place? How do we decide which system, or sub-system, to make resilient? For any given system, answering these questions requires engagement with different stakeholders, allowing a conversation to take place that typically spans different disciplines. However, resilience is a difficult concept to communicate about because terminology is not used consistently across, or even within, domains. This presents a challenge for designers wishing to elicit or understand stakeholders’ requirements for the systems that they are concerned with. To address this, we conducted a workshop with stakeholders working in different areas of academia, industry, and policy who are concerned with the resilience of sociotechnical systems. The aim of this workshop was to identify what stakeholders might want to convey about resilience and what would help them to communicate effectively. We identified three main characteristics of resilience and three system features that are critical to communication about resilience. These are all illustrated with a diagrammatic framework that was developed from real system examples given by the participants. From the data we propose a set of distinctions that offer a starting point for discussions about resilience with diverse stakeholders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adger, W. N. (2000). Social and ecological resilience: Are they related? Progress in Human Geography, 24(3), 347–364. https://doi.org/10.1191/030913200701540465

    Article  Google Scholar 

  • Allen, C. R., Angeler, D. G., Garmestani, A. S., Gunderson, L. H., & Holling, C. S. (2014). Panarchy: Theory and application. Ecosystems, 1–12. https://doi.org/10.1007/s10021-013-9744-2

    Article  Google Scholar 

  • Amalberti, R. (2006). Optimum system safety and optimum system resilience: Agonistic or antagonistic concepts? In Resilience engineering: Concepts and precepts (pp. 253–271). Hampshire, UK: Ashgate Publishing, Ltd.

    Google Scholar 

  • Ash, J., & Newth, D. (2007). Optimizing complex networks for resilience against cascading failure. Physica A: Statistical Mechanics and Its Applications, 380, 673–683. https://doi.org/10.1016/j.physa.2006.12.058

    Article  Google Scholar 

  • Baek, J. S., Meroni, A., & Manzini, E. (2015). A sociotechnical approach to design for community resilience: A framework for analysis and design goal forming. Design Studies, 40, 60–84. https://doi.org/10.1016/j.destud.2015.06.004

    Article  Google Scholar 

  • Behymer, K. J., & Flach, J. M. (2016). From autonomous systems to sociotechnical systems: Designing effective collaborations. She Ji: The Journal of Design, Economics, and Innovation, 2(2), 105–114. https://doi.org/10.1016/j.sheji.2016.09.001

    Article  Google Scholar 

  • Biggs, R., Schlüter, M., Biggs, D., Bohensky, E. L., BurnSilver, S., Cundill, G., et al. (2012). Toward principles for enhancing the resilience of ecosystem services. Annual Review of Environment and Resources, 37(1), 421–448. https://doi.org/10.1146/annurev-environ-051211-123836

    Article  Google Scholar 

  • Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., et al. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19(4), 733–752. https://doi.org/10.1193/1.1623497

    Article  Google Scholar 

  • Buede, D. M. (2000). The engineering design of systems: Models and methods. New York: Wiley.

    Google Scholar 

  • Campanella, T. J. (2006). Urban resilience and the recovery of New Orleans. Journal of the American Planning Association, 72(2), 141–146. https://doi.org/10.1080/01944360608976734

    Article  Google Scholar 

  • Cardona, O. D., Hurtado, J. E., Duque, G., Moreno, A., Chardon, A. C., Velásquez, L. S., et al. (2003). The notion of disaster risk: Conceptual framework for integrated management. Indicators for Disaster Risk Management. Manizales, Colombia: National University of Colombia.

    Google Scholar 

  • Carpenter, S., Walker, B., Anderies, J. M., & Abel, N. (2001). From metaphor to measurement: Resilience of what to what? Ecosystems, 4(8), 765–781. https://doi.org/10.1007/s10021-001-0045-9

    Article  Google Scholar 

  • Carpenter, S. R., Arrow, K. J., Barrett, S., Biggs, R., Brock, W. A., Crépin, A.-S., et al. (2012). General resilience to cope with extreme events. Sustainability, 4(12), 3248–3259. https://doi.org/10.3390/su4123248

    Article  Google Scholar 

  • Chalupnik, M. J., Wynn, D. C., & Clarkson, P. J. (2013). Comparison of ilities for protection against uncertainty in system design. Journal of Engineering Design, 24(12), 814–829. https://doi.org/10.1080/09544828.2013.851783

    Article  Google Scholar 

  • Chatham House. (2017). Chatham House Rule.

    Google Scholar 

  • Chen, C.-C., & Crilly, N. (2014). Modularity, redundancy and degeneracy: Cross-domain perspectives on key design principles (pp. 546–553). In 2014 8th annual IEEE Systems Conference (SysCon). Ottawa, Ontario, Canada. https://doi.org/10.1109/SysCon.2014.6819309

  • Chen, C.-C., & Crilly, N. (2016a). Describing complex design practices with a cross-domain framework: Learning from synthetic biology and swarm robotics. Research in Engineering Design, 27(3), 291–305. https://doi.org/10.1007/s00163-016-0219-2

    Article  Google Scholar 

  • Chen, C.-C., & Crilly, N. (2016b). From modularity to emergence: a primer on the design and science of complex systems. https://doi.org/10.17863/CAM.4503

  • Comfort, L. K. (1994). Risk and resilience: Inter-organizational learning following the Northridge Earthquake of 17 January 1994. Journal of Contingencies and Crisis Management, 2(3), 157–170. https://doi.org/10.1111/j.1468-5973.1994.tb00038.x

    Article  Google Scholar 

  • Comfort, L. K. (1999). Shared risk: Complex systems in seismic response. New York: Pergamon.

    Google Scholar 

  • Crilly, N. (2013). Function propagation through nested systems. Design Studies, 34(2), 216–242. https://doi.org/10.1016/j.destud.2012.10.003

    Article  Google Scholar 

  • de Weck, O., Eckert, C., & Clarkson, J. (2007). A classification of uncertainty for early product and system design. Presented at the International Conference on Engineering Design. Paris: ICED.

    Google Scholar 

  • de Weck, O., Roos, D., & Magee, C. (2011). Engineering systems: Meeting human needs in a complex technological world. Cambridge, MA: MIT Press.

    Book  Google Scholar 

  • de Weck, O., Ross, A. M., & Rhodes, D. H. (2012). Investigating relationships and semantic sets amongst system lifecycle properties (ilities). Presented at the Third International Engineering Systems Symposium. Delft, The Netherlands: CESUN 2012.

    Google Scholar 

  • Dovers, S. R., & Handmer, J. W. (1992). Uncertainty, sustainability and change. Global Environmental Change, 2(4), 262–276. https://doi.org/10.1016/0959-3780(92)90044-8

    Article  Google Scholar 

  • Fiksel, J. (2003). Designing resilient, sustainable systems. Environmental Science & Technology, 37(23), 5330–5339. https://doi.org/10.1021/es0344819

    Article  Google Scholar 

  • Fiksel, J. (2006). Sustainability and resilience: Toward a systems approach. Sustainability: Science, Practice, & Policy, 2(2).

    Google Scholar 

  • Fitzgerald, M. E., & Ross, A. M. (2012). Sustaining lifecycle value: Valuable changeability analysis with era simulation (pp. 1–7). Presented at the Systems Conference (SysCon), 2012 IEEE International. https://doi.org/10.1109/SysCon.2012.6189465

  • Folke, C., Carpenter, S. R., Walker, B., Scheffer, M., Chapin, T., & Rockström, J. (2010). Resilience thinking: Integrating resilience, adaptability and transformability. Ecology and Society, 15(4), 20.

    Article  Google Scholar 

  • Frei, R., & Serugendo, G. D. M. (2011a). Advances in complexity engineering. International Journal of Bio-Inspired Computation, 3(4), 199–212.

    Article  Google Scholar 

  • Frei, R., & Serugendo, G. D. M. (2011b). Concepts in complexity engineering. International Journal of Bio-Inspired Computation, 3(2), 123–139.

    Article  Google Scholar 

  • Fricke, E., & Schulz, A. P. (2005). Design for changeability (DfC): Principles to enable changes in systems throughout their entire lifecycle. Systems Engineering, 8(4), 342–359. https://doi.org/10.1002/sys.20039

    Article  Google Scholar 

  • Haberfellner, R., & de Weck, O. (2005). Agile systems engineering versus agile systems engineering (Vol. 2, pp. 1449–1465).

    Google Scholar 

  • Haimes, Y. Y. (2009). On the definition of resilience in systems. Risk Analysis, 29(4), 498–501. https://doi.org/10.1111/j.1539-6924.2009.01216.x

    Article  Google Scholar 

  • Haimes, Y. Y., Crowther, K., & Horowitz, B. M. (2008). Homeland security preparedness: Balancing protection with resilience in emergent systems. Systems Engineering, 11(4), 287–308. https://doi.org/10.1002/sys.20101

    Article  Google Scholar 

  • Handmer, J. W., & Dovers, S. R. (1996). A typology of resilience: Rethinking institutions for sustainable development. Organization & Environment, 9(4), 482–511. https://doi.org/10.1177/108602669600900403

    Article  Google Scholar 

  • Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1–23. https://doi.org/10.2307/2096802

    Article  Google Scholar 

  • Home, J. F., & Orr, J. E. (1997). Assessing behaviors that create resilient organizations. Employment Relations Today, 24(4), 29–39. https://doi.org/10.1002/ert.3910240405

    Article  Google Scholar 

  • Jen, E. (2003). Stable or robust? What’s the difference? Complexity, 8(3), 12–18.

    Article  Google Scholar 

  • Johnson, J., Panagioti, M., Bass, J., Ramsey, L., & Harrison, R. (2016). Resilience to emotional distress in response to failure, error or mistakes: A systematic review. Clinical Psychology Review, 52, 19–42. https://doi.org/10.1016/j.cpr.2016.11.007

    Article  Google Scholar 

  • Joseph, J. (2013). Resilience as embedded neoliberalism: A governmentality approach. Resilience, 1(1), 38–52. https://doi.org/10.1080/21693293.2013.765741

    Article  Google Scholar 

  • Kimhi, S., & Shamai, M. (2004). Community resilience and the impact of stress: Adult response to Israel’s withdrawal from Lebanon. Journal of Community Psychology, 32(4), 439–451. https://doi.org/10.1002/jcop.20012

    Article  Google Scholar 

  • Kroes, P., Franssen, M., van de Poel, I., & Ottens, M. (2006). Treating sociotechnical systems as engineering systems: Some conceptual problems. Systems Research and Behavioral Science, 23(6), 803–814. https://doi.org/10.1002/sres.703

    Article  Google Scholar 

  • Leveson, N., Dulac, N., Zipkin, D., Cutcher-Gershenfeld, J., Carroll, J., & Barrett, B. (2006). Engineering resilience into safety-critical systems. In Resilience engineering: Concepts and precepts (pp. 95–124). Hampshire, UK: Ashgate Publishing, Ltd.

    Google Scholar 

  • Levis, A. (1999). System architectures. In A. P. Sage & W. B. Rouse (Eds.), Handbook of systems engineering and management (pp. 427–454). New York: Wiley.

    Google Scholar 

  • MacAskill, K., & Guthrie, P. (2014). Multiple interpretations of resilience in disaster risk management. Procedia Economics and Finance, 18, 667–674. https://doi.org/10.1016/S2212-5671(14)00989-7

    Article  Google Scholar 

  • Madni, A. M., & Jackson, S. (2009). Towards a conceptual framework for resilience engineering. IEEE Systems Journal, 3(2), 181–191. https://doi.org/10.1109/JSYST.2009.2017397

    Article  Google Scholar 

  • Maguire, B., & Hagan, P. (2007). Disasters and communities: Understanding social resilience. Australian Journal of Emergency Management, 22(2), 16–20.

    Google Scholar 

  • Maier, M. W., & Rechtin, E. (2009). The art of systems architecting (3rd ed.). Boca Raton, FL: CRC Press.

    Google Scholar 

  • McDonald, N. (2006). Organisational resilience and industrial risk. In Resilience engineering: Concepts and precepts (pp. 155–182). Hampshire, UK: Ashgate Publishing, Ltd.

    Google Scholar 

  • McManus, H., Richards, M., Ross, A. M., & Hastings, D. (2007). A framework for incorporating ‘ilities’ in tradespace studies (Vol. 1, pp. 941–954). Presented at the American Institute of Aeronautics and Astronautics Space 2007 Conference. Long Beach, CA: AIAA.

    Google Scholar 

  • Melese, Y., Stikkelman, R., & Herder, P. (2016). A sociotechnical perspective to flexible design of energy infrastructure systems (pp. 004669–004674). In 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). https://doi.org/10.1109/SMC.2016.7844968

  • Midgley, G. (1992). The sacred and profane in critical systems thinking. Systems Practice, 5(1), 5–16. https://doi.org/10.1007/BF01060044

    Article  Google Scholar 

  • Mosleh, M., Ludlow, P., & Heydari, B. (2016). Resource allocation through network architecture in systems of systems: A complex networks framework (pp. 1–5). In 2016 Annual IEEE Systems Conference (SysCon). https://doi.org/10.1109/SYSCON.2016.7490629

  • Nachtwey, A., Riedel, R., & Mueller, E. (2009). Flexibility oriented design of production systems (pp. 720–724). Presented at the International Conference on Computers Industrial Engineering, 2009. CIE 2009. https://doi.org/10.1109/ICCIE.2009.5223914

  • Norman, D. A., & Stappers, P. J. (2015). DesignX: Complex sociotechnical systems. She Ji: The Journal of Design, Economics, and Innovation, 1(2), 83–106. https://doi.org/10.1016/j.sheji.2016.01.002

    Article  Google Scholar 

  • Pariès, J. (2006). Complexity, emergence, resilience. In Resilience engineering: Concepts and precepts (pp. 43–54). Hampshire, UK: Ashgate Publishing, Ltd

    Chapter  Google Scholar 

  • Pavard, B., Dugdale, J., Saoud, N. B., Darcy, S., & Salembier, P. (2006). Design of robust sociotechnical systems. Presented at the Resilience Engineering, Juan les Pins, Ecole de Mines de Paris, France.

    Google Scholar 

  • Pimm, S. L. (1984). The complexity and stability of ecosystems. Nature, 307(5949), 321–326.

    Article  Google Scholar 

  • Robson, C. (2011). Real world research (3rd ed.). Chichester, UK: Wiley.

    Google Scholar 

  • Rose, A. (2007). Economic resilience to natural and man-made disasters: Multidisciplinary origins and contextual dimensions. Environmental Hazards, 7(4), 383–398. https://doi.org/10.1016/j.envhaz.2007.10.001

    Article  Google Scholar 

  • Rose, A., & Liao, S.-Y. (2005). Modeling regional economic resilience to disasters: A computable general equilibrium analysis of water service disruptions. Journal of Regional Science, 45(1), 75–112. https://doi.org/10.1111/j.0022-4146.2005.00365.x

    Article  Google Scholar 

  • Ross, A. M. (2008). Defining and using the new ‘ilities’ (SEAri Working Paper Series No. WP-2008-4-1). Cambridge, MA: Massachusetts Institute of Technology, MIT.

    Google Scholar 

  • Ryan, E. T., Jacques, D. R., & Colombi, J. M. (2012). An ontological framework for clarifying flexibility-related terminology via literature survey. Systems Engineering, 16(1), 99–110.

    Article  Google Scholar 

  • Sheffi, Y., & Rice, J. B. (2005, Fall). A supply chain view of the resilient enterprise. MIT Sloan Review, 47, 41–48.

    Google Scholar 

  • Simmie, J., & Martin, R. (2010). The economic resilience of regions: Towards an evolutionary approach. Cambridge Journal of Regions, Economy and Society, 3(1), 27–43. https://doi.org/10.1093/cjres/rsp029

    Article  Google Scholar 

  • Smith, L., & Violanti, J. (2000). Disaster response: Risk, vulnerability and resilience. Disaster Prevention and Management: An International Journal, 9(3), 173–180. https://doi.org/10.1108/09653560010335068

    Article  Google Scholar 

  • Timmerman, P. (1981). Vulnerability resilience and collapse of society: A review of models and possible climatic applications (Environmental Monograph No. 1). Toronto, Canada: Institute for Environmental Studies, University of Toronto.

    Google Scholar 

  • Umoquit, M. J., Tso, P., Varga-Atkins, T., O’Brien, M., & Wheeldon, J. (2013). Diagrammatic elicitation: Defining the use of diagrams in data collection. The Qualitative Report, 18(60), 1–12.

    Google Scholar 

  • UN/ISDR. (2004). Living with risk: A global review of disaster reduction initiatives. New York: United Nations Publications.

    Google Scholar 

  • Vermaas, P., Kroes, P., van de Poel, I., Franssen, M., & Houkes, W. (2011). A philosophy of technology: From technical artefacts to sociotechnical systems. San Francisco: Morgan & Claypool Publishers.

    Article  Google Scholar 

  • Westrum, R. (2006). A typology of resilience situations. In Resilience engineering: Concepts and precepts (pp. 55–68). Hampshire, UK: Ashgate Publishing, Ltd.

    Google Scholar 

  • Whitacre, J., & Bender, A. (2010). Degeneracy: A design principle for achieving robustness and evolvability. Journal of Theoretical Biology, 263(1), 143–153. https://doi.org/10.1016/j.jtbi.2009.11.008

    Article  Google Scholar 

  • Wiendahl, H.-P., ElMaraghy, H. A., Nyhuis, P., Zäh, M. F., Wiendahl, H.-H., Duffie, N., et al. (2007). Changeable manufacturing – Classification, design and operation. CIRP Annals – Manufacturing Technology, 56(2), 783–809. https://doi.org/10.1016/j.cirp.2007.10.003

    Article  Google Scholar 

  • Wildavsky, A. B. (1988). Searching for safety. New Brunswick, NJ: Transaction Publishers.

    Google Scholar 

  • Woods, D. D., & Cook, R. I. (2006). Incidents – Markers of resilience or brittleness? In Resilience engineering: Concepts and precepts (pp. 69–76). Hampshire, UK: Ashgate Publishing, Ltd.

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank all of the workshop participants for their time and insights. Thanks also go to Belen Tejada Romero for her help in organizing the event and transcribing the data and to Dr. Chih-Chen for her constructive comments. This work was supported by the UK’s Engineering and Physical Sciences Research Council (EPSRC) through a Doctoral Training Grant awarded to Eloise Taysom and an Early Career Fellowship awarded to Nathan Crilly (EP/K008196/1). The raw data from the workshop cannot be made freely available because inherent to that data is sensitive information relating to the individuals and organizations involved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eloise Taysom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taysom, E., Crilly, N. (2018). On the Resilience of Sociotechnical Systems. In: Jones, P., Kijima, K. (eds) Systemic Design. Translational Systems Sciences, vol 8. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55639-8_6

Download citation

Publish with us

Policies and ethics