Summary and Future Prospects

Part of the Springer Theses book series (Springer Theses)


In this Chapter, I summarize my Ph.D. study on the shock-cloud interaction toward the young \(\gamma \)-ray supernova remnant (SNR) RX J1713.7–3946 on the basis of a multi-wavelength study. The datasets of NANTEN / NANTEN2 CO and ATCA & Parkes HI reveal the distribution and physical condition of the overall interstellar gas, which consists of both molecular and atomic components. I obtained the first evidence that efficient cosmic ray acceleration is strongly connected to the interaction between the shock waves and interstellar gas and that cosmic ray protons are accelerated to close to the knee energy in the SNR. This investigation was conducted by comparing interstellar gas, H.E.S.S. VHE \(\gamma \)-ray, and Suzaku synchrotron X-ray data. I conclude that the interstellar gas plays an essential role in producing \(\gamma \)- and X-rays and in efficiently.


Shock Speed Large Magellanic Cloud Cherenkov Telescope Array Very High Energy Photon Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. F. Aharonian, A.G. Akhperjanian, A.R. Bazer-Bachi, M. Beilicke, W. Benbow, D. Berge et al., Astron. Astrophys. 449, 223 (2006)ADSCrossRefGoogle Scholar
  2. E. Fermi, Physica. Rev. 75, 1169 (1949)ADSCrossRefGoogle Scholar
  3. Fukui, Y., In Astrophysics and Space Science Proceedings, ed. Diego F. Torres, O. Reimer. 2nd Session of the Sant Cugat Forum on astrophysics, vol 34 (Springer, Berlin, 2013), p. 249Google Scholar
  4. T. Fukuda, S. Yoshiike, H. Sano, K. Torii, H. Yamamoto, F. Acero et al., Astrophys. J. 788, 94 (2014)ADSCrossRefGoogle Scholar
  5. S. Gabici, F.A. Aharonian, S. Casanova, Month. Notice. R. Astronom. Societ. 396, 1629 (2009)ADSCrossRefGoogle Scholar
  6. P.F. Goldsmith, D. Li, M. Krčo, Astrophys. J. 654, 273 (2007)ADSCrossRefGoogle Scholar
  7. E.A. Helder, J. Vink, C.G. Bassa, A. Bamba, J.A.M. Bleeker, S. Funk et al., Scienc. 325, 719 (2009)ADSCrossRefGoogle Scholar
  8. M. Hoshino, Physica. Rev. Lett. 108, 135003 (2012)ADSCrossRefGoogle Scholar
  9. T. Inoue, R. Yamazaki, S.-I. Inutsuka, Astrophys. J. 695, 825 (2009)ADSCrossRefGoogle Scholar
  10. T. Inoue, R. Yamazaki, S.-I. Inutsuka, Y. Fukui, Astrophys. J. 744, 71 (2012)ADSCrossRefGoogle Scholar
  11. Y. Ohira, K. Murase, R. Yamazaki, Astron. Astrophys. 513, A17 (2010)ADSCrossRefGoogle Scholar
  12. H. Sano, Y. Fukui, S. Yoshiike, T. Fukuda, K. Tachihara, S. Inutsuka et al., Revolut. Astron. ALMA Third Year 499, 257 (2015)ADSGoogle Scholar
  13. H. Uchida, K. Koyama, H. Yamaguchi, M. Sawada, T. Ohnishi, T.G. Tsuru et al., Publ. Astrono. Soc. Jpn. 64, 141 (2012)ADSCrossRefGoogle Scholar
  14. Y. Uchiyama, F.A. Aharonian, T. Tanaka, T. Takahashi, Y. Maeda, Nat. 449, 576 (2007)ADSCrossRefGoogle Scholar
  15. S. Yoshiike, T. Fukuda, H. Sano, A. Ohama, N. Moribe, K. Torii et al., Astrophys. J. 768, 179 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2017

Authors and Affiliations

  1. 1.Department of PhysicsNagoya UniversityNagoyaJapan

Personalised recommendations