Skip to main content

Mechanisms of POD and POCD: Effects of Anesthetics

  • Chapter
  • First Online:
Anesthesia and Neurotoxicity

Abstract

Postoperative delirium (POD) and postoperative cognitive dysfunction (POCD) worsen quality of life in postoperative patients and, moreover, impose huge cost on hospitals. Previous clinical reports revealed that POD appears to be a risk for high mortality in the elderly and POCD appears to have long-lasting adverse effect on learning performance in children. Nevertheless nobody has proposed the effective way to cure them. We are still struggling in exploring mechanisms underlying POD and POCD because of the following reasons: (1) clinical definitions may be obscure, (2) underlying mechanisms are multifactorial, (3) less animal models comparable with patients are available. Under these difficulties, a considerable number of studies have contributed to identify key molecules and neural circuits essential for the establishment of these diseases and fortunately some of them appear to postulate reliable mechanisms. Integrating latest findings, here we discuss about these mechanisms underlying POD and POCD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inouye SK, Charpentier PA (1996) Precipitating factors for delirium in hospitalized elderly persons. Predictive model and interrelationship with baseline vulnerability. JAMA 275:852–857

    Article  CAS  PubMed  Google Scholar 

  2. Inouye SK, Westendorp RG, Saczynski JS (2014) Delirium in elderly people. Lancet 383:911–922

    Article  PubMed  Google Scholar 

  3. Inouye SK, Westendorp RG, Saczynski JS, Kimchi EY, Cleinman AA (2014) Delirium in elderly people—authors’ reply. Lancet 383:2045

    Article  PubMed  Google Scholar 

  4. Hshieh TT, Fong TG, Marcantonio ER, Inouye SK (2008) Cholinergic deficiency hypothesis in delirium: a synthesis of current evidence. J Gerontol A Biol Sci Med Sci 63:764–772

    Article  PubMed  PubMed Central  Google Scholar 

  5. Han L, McCusker J, Cole M, Abrahamowicz M, Primeau F, Elie M (2001) Use of medications with anticholinergic effect predicts clinical severity of delirium symptoms in older medical inpatients. Arch Intern Med 161:1099–1105

    Article  CAS  PubMed  Google Scholar 

  6. Young BK, Camicioli R, Ganzini L (1997) Neuropsychiatric adverse effects of antiparkinsonian drugs. Characteristics, evaluation and treatment. Drugs Aging 10:367–383

    Article  CAS  PubMed  Google Scholar 

  7. Gamberini M, Bolliger D, Lurati Buse GA et al (2009) Rivastigmine for the prevention of postoperative delirium in elderly patients undergoing elective cardiac surgery--a randomized controlled trial. Crit Care Med 37:1762–1768

    Article  CAS  PubMed  Google Scholar 

  8. Hatta K, Kishi Y, Wada K et al (2014) Preventive effects of ramelteon on delirium: a randomized placebo-controlled trial. JAMA Psychiat 71:397–403

    Article  CAS  Google Scholar 

  9. Hallanger AE, Levey AI, Lee HJ, Rye DB, Wainer BH (1987) The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J Comp Neurol 262:105–124

    Article  CAS  PubMed  Google Scholar 

  10. Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437:1257–1263

    Article  CAS  PubMed  Google Scholar 

  11. Leavitt ML, Trzepacz PT, Ciongoli K et al (1994) Rat model of delirium: atropine dose–response relationships. J Neuropsychiatry Clin Neurosci 6:279–284

    Article  CAS  PubMed  Google Scholar 

  12. Trzepacz PT, Leavitt M, Ciongoli K (1992) An animal model for delirium. Psychosomatics 33:404–415

    Article  CAS  PubMed  Google Scholar 

  13. O’hare E, Welcon DT, Bettin K et al (1997) Serum anticholinergic activity and behavior following atropine sulfate administration in the rat. Pharmacol Biochem Behav 56:151–154

    Article  PubMed  Google Scholar 

  14. Tamura Y, Chiba S, Takasaki H et al (2006) Biperiden-induced delirium model in rats: a behavioral and electroencephalographic study. Brain Res 1115:194–199

    Article  CAS  PubMed  Google Scholar 

  15. Mach JR, Dysken MW, Kuskowski M et al (1995) Serum anticholinergic activity in hospitalized older persons with delirium: a preliminary study. J Am Geriatr Soc 43:491–495

    Article  PubMed  Google Scholar 

  16. Brown JH (1990) Atropine, scopolamine, and other related antimuscarinic drugs. In: Gilman AG, Rall TW, Nies AS, Taylor P (eds) The pharmacological basis of therapeutics. Pergamon Press, New York, pp 150–165

    Google Scholar 

  17. Klinkenberg I, Sambeth A, Blokland A (2011) Acetylcholine and attention. Behav Brain Res 221:430–442

    Article  CAS  PubMed  Google Scholar 

  18. Herrero JL, Roberts MJ, Delicato LS et al (2008) Acetylcholine contributes through muscarinic receptors to attentional modulation in V1. Nature 454:1110–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yonezaki K, Uchimoto K, Miyazaki T et al (2015) Postanesthetic effects of isoflurane on behavioral phenotypes of adult male C57BL/6J mice. PLoS One 10:e0122118

    Article  PubMed  PubMed Central  Google Scholar 

  20. Aston-Jones G, Bloom FE (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1:876–886

    CAS  PubMed  Google Scholar 

  21. Takahashi K, Kayama Y, Lin JS, Sakai K (2010) Locus coeruleus neuronal activity during the sleep-waking cycle in mice. Neuroscience 169:1115–1126

    Article  CAS  PubMed  Google Scholar 

  22. Sherin JE, Elmquist JK, Torrealba F, Saper CB (1998) Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci 18:4705–4721

    CAS  PubMed  Google Scholar 

  23. Lu J, Bjorkum AA, Xu M, Gaus SE, Shiromani PJ, Saper CB (2002) Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep. J Neurosci 22:4568–4576

    CAS  PubMed  Google Scholar 

  24. Lu J, Greco MA, Shiromani P, Saper CB (2000) Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J Neurosci 20:3830–3842

    CAS  PubMed  Google Scholar 

  25. Djaiani G, Silverton N, Fedorko L et al (2016) Dexmedetomidine versus propofol sedation reduces delirium after cardiac surgery: a randomized controlled trial. Anesthesiology 124(2):362–368

    Article  CAS  PubMed  Google Scholar 

  26. Barr J, Fraser GL, Puntillo K et al (2013) Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med 41:263–306

    Article  PubMed  Google Scholar 

  27. Yoshitaka S, Egi M, Kanazawa T, Toda Y, Morita K (2014) The association of plasma gamma-aminobutyric acid concentration with postoperative delirium in critically ill patients. Crit Care Resusc 16:269–273

    PubMed  Google Scholar 

  28. Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24:726–731

    Article  CAS  PubMed  Google Scholar 

  29. Wang ZH, Ni XL, Li JN et al (2014) Changes in plasma orexin-a levels in sevoflurane-remifentanil anesthesia in young and elderly patients undergoing elective lumbar surgery. Anesth Analg 118:818–822

    Article  CAS  PubMed  Google Scholar 

  30. Howland RH (2014) Suvorexant: a novel therapy for the treatment of insomnia. J Psychosoc Nurs Ment Health Serv 52:23–26

    Article  Google Scholar 

  31. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  CAS  PubMed  Google Scholar 

  32. Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE (2010) Sleep state switching. Neuron 68:1023–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Strecker RE, Morairty S, Thakkar MM et al (2000) Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state. Behav Brain Res 115:183–204

    Article  CAS  PubMed  Google Scholar 

  34. Pevet P, Challet E (2011) Melatonin: both master clock output and internal time-giver in the circadian clocks network. J Physiol Paris 105:170–182

    Article  PubMed  Google Scholar 

  35. Mihara T, Kikuchi T, Kamiya Y et al (2012) Day or night administration of ketamine and pentobarbital differentially affect circadian rhythms of pineal melatonin secretion and locomotor activity in rats. Anesth Analg 115:805–813

    Article  CAS  PubMed  Google Scholar 

  36. Xu Z, Dong Y, Culley DJ, Marcantonio ER, Crosby G, Tanzi RE, Zhang Y, Xie Z (2014) Age-dependent postoperative cognitive impairment and Alzheimer-related neuropathology in mice. Sci Rep 4:3766

    Article  PubMed  PubMed Central  Google Scholar 

  37. Culley DJ, Baxter MG, Yukhananov R, Crosby G (2004) Long-term impairment of acquisition of a spatial memory task following isoflurane-nitrous oxide anesthesia in rats. Anesthesiology 100:309–314

    Article  CAS  PubMed  Google Scholar 

  38. Brambrink AM, Evers AS, Avidan MS, Farber NB, Smith DJ, Zhang X, Dissen GA, Creeley CE, Olney JW (2010) Isoflurane-induced neuroapoptosis in the neonatal rhesus macaque brain. Anesthesiology 112:834–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Eichenbaum H, Dudchenko P, Wood E et al (1999) The hippocampus, memory, and place cells. Neuron 23:209–226

    Article  CAS  PubMed  Google Scholar 

  40. Cahill L, Babinsky R, Markowitsch R et al (1995) The amygdala and emotional memory. Nature 377:295–296

    Article  CAS  PubMed  Google Scholar 

  41. Rudolph U, Antkowtak B (2004) Molecular and neuronal substrate for general anesthetics. Nat Rev Neurosci 5:709–720

    Article  CAS  PubMed  Google Scholar 

  42. Uchimoto K, Miyazaki T, Kamiya Y et al (2014) Isoflurane impairs learning and hippocampal long-term potentiation via the saturation of synaptic plasticity. Anesthesiology 121:302–310

    Article  CAS  PubMed  Google Scholar 

  43. Miyazaki T, Takase K, Nakajima W et al (2012) Disrupted cortical function underlies behavior dysfunction due to social isolation. J Clin Invest 122:2690–2701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ikonomidou C, Bosch F, Miksa M et al (1999) Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283:70–74

    Article  CAS  PubMed  Google Scholar 

  45. Jevtovic-Todorovic V, Hartman RE, Izumi Y et al (2003) Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 23:876–882

    CAS  PubMed  Google Scholar 

  46. Jevtovic-Todorovic V, Absalom AR, Blomgren K et al (2013) Anaesthetic neurotoxicity and neuroplasticity: an expert group report and statement based on the BJA Salzburg seminar. BJA 111:143–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Paule MG, Li M, Allen RR et al (2011) Ketamine anesthesia during the first week of life can cause long-lasting cognitive deficits in rhesus monkeys. Neurotoxicol Teratol 33:220–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Goyal L (2001) Cell death inhibition: keeping caspases in check. Cell 104:805–808

    Article  CAS  PubMed  Google Scholar 

  49. Pellegrini L, Bennis Y, Velly L et al (2014) Erythropoietin protects newborn rat against sevoflurane-induced neurotoxicity. Pediat Anesth 24:749–759

    Article  Google Scholar 

  50. Lu LX, Yon JH, Carter LB et al (2006) General anesthesia activates BDNF-dependent neuroapoptosis in the developing rat brain. Apoptosis 11:1603–1615

    Article  CAS  PubMed  Google Scholar 

  51. Yon JH, Carter LB, Reiter RJ et al (2006) Melatonin reduces the severity of anesthesia-induced apoptotic neurodegeneration in the developing rat brain. Nuerobiol Dis 21:522–530

    Article  CAS  Google Scholar 

  52. Li Y, Zheg M, Chen W et al (2014) Dexmedetomidine reduces isoflurane-induced neuroapoptosis partly by preserving PI3K/Akt pathway in the hippocampus of neonatal rats. PLoS One 9(4):e93639

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yonamine R, Satoh Y, Kodama M et al (2013) Coadministration of hydrogen gas as part of the carrier gas mixture suppresses neuronal apoptosis and subsequent behavioral deficits caused by neonatal exposure to sevoflurane in mice. Anesthesiology 118:105–113

    Article  CAS  PubMed  Google Scholar 

  54. Takaenoki Y, Satoh Y, Araki Y et al (2014) Neonatal exposure to sevoflurane in mice causes deficits in maternal behavior later in adulthood. Anesthesiology 120:403–415

    Article  CAS  PubMed  Google Scholar 

  55. Koyama Y, Andoh T, Kamiya Y et al (2013) Bumetanide, an inhibitor of cation-chloride cotransporter isoform 1, inhibits gamma-aminobutyric acidergic excitatory actions and enhances sedative actions of midazolam in neonatal rats. Anesthesiology 119:1096–1108

    Article  CAS  PubMed  Google Scholar 

  56. Gagnon M, Bergeron MJ, Lavertu G et al (2013) Chloride extrusion enhancers as novel therapeutics for neurological diseases. Nat Med 19:1524–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Moser EI, Krobert KA, Moser MB et al (1998) Impaired spatial learning after saturation of long-term potentiation. Science 281:2038–2042

    Article  CAS  PubMed  Google Scholar 

  58. Saab BJ, Maclean AJ, Kanisek M et al (2010) Short-term memory impairment after isoflurane in mice is prevented by the alfa5 gamma-aminobutyric acid type a receptor inverse agonist L-655,708. Anesthesiology 113:1061–1071

    Article  CAS  PubMed  Google Scholar 

  59. Martin LJ, Oh GH, Orser BA (2009) Etomidate targets alpha5 gamma-aminobutyric acid subtype a receptors to regulate synaptic plasticity and memory blockade. Anesthesiology 111:1025–1035

    Article  CAS  PubMed  Google Scholar 

  60. Hauer D, Ratano P, Morena M et al (2011) Propofol enhances memory formation Vis an interaction with the endocannabinoid system. Anesthesiology 114:1380–1388

    Article  CAS  PubMed  Google Scholar 

  61. Gagnon M, Siesjo BK (1992) Pathophysiology and treatment of focal cerebral ischemia. J Neurosurg 77:169–184

    Article  Google Scholar 

  62. Dirnagi U, Iadecola C, Moskowitz MA (1999) Pathophysiology of ischemic stroke: an integrated view. Trends Neurosci 22:391–397

    Article  Google Scholar 

  63. Xie Z, Culley DJ, Dong Y et al (2008) The common inhalation anesthetic isoflurane induces caspase activity and increases Abeta level in vivo. Ann Neurol 64:618–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lu Y, Wu X, Dong Y et al (2010) Anesthetic sevoflurane causes neurotoxicity differently in neonatal naïve and Alzheimer disease transgenic mice. Anesthesiology 112:1404–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Miyazaki M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Miyazaki, T., Yamaguchi, Y., Goto, T. (2017). Mechanisms of POD and POCD: Effects of Anesthetics. In: Morimoto, Y. (eds) Anesthesia and Neurotoxicity. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55624-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55624-4_9

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55623-7

  • Online ISBN: 978-4-431-55624-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics