Skip to main content

Present Clinical Status of Postoperative Cognitive Dysfunction in Cardiovascular Surgery

  • Chapter
  • First Online:
Anesthesia and Neurotoxicity

Abstract

Postoperative cognitive dysfunction (POCD) is one of the serious cerebral complications that occur after cardiac and major vascular surgery, leading to low quality of life and poor prognosis of the patients. POCD has been comprehensively investigated in coronary artery bypass grafting surgery with cardiopulmonary bypass (CPB) to elucidate its risk factors and to seek a better management that can reduce the development of POCD. However, in patients with coronary artery disease, the long-term (>6 months) incidence rate of cognitive dysfunction did not differ significantly in four treatment groups (coronary artery bypass grafting surgery with, or without CPB, percutaneous coronary intervention, and drug therapy plus follow-up observation). These findings suggest that surgery and CPB affect cognitive impairment for only about 6 months after surgery. On the other hand, there is no well-designed study for POCD with sufficient number of patients in valvular and major vascular surgery. Future challenges need the elucidation of long-term incidence rate of POCD in these surgeries and should include the patients with less invasive procedure such as transcatheter aortic valve implantation and thoracic endovascular aortic repair surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arrowsmith JE, Grocott HP, Reves JG et al (2000) Central nervous system complications of cardiac surgery. Br J Anaesth 84:378–393

    Article  CAS  PubMed  Google Scholar 

  2. Amano J, Kuwano H, Yokomise H (2013) Thoracic and cardiovascular surgery in Japan during 2011: Annual report by The Japanese Association for Thoracic Surgery. Gen Thorac Cardiovasc Surg 61:578–607

    Google Scholar 

  3. Murkin JM, Newman SP, Stump DA et al (1995) Statement of consensus on assessment of neurobehavioral outcomes after cardiac surgery. Ann Thorac Surg 59:1289–1295

    Article  CAS  PubMed  Google Scholar 

  4. Rudolph JL, Schreiber KA, Culley DJ et al (2010) Measurement of post-operative cognitive dysfunction after cardiac surgery: a systematic review. Acta Anaesthesiol Scand 54:663–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mullges W, Babin-Ebell J, Reents W et al (2002) Cognitive performance after coronary artery bypass grafting: a follow-up study. Neurology 59:741–743

    Article  PubMed  Google Scholar 

  6. Dupuis G, Kennedy E, Lindquist R et al (2006) Coronary artery bypass graft surgery and cognitive performance. Am J Crit Care 15:471–478

    PubMed  Google Scholar 

  7. Raymond PD, Hinton-Bayre AD, Radel M et al (2006) Assessment of statistical change criteria used to define significant change in neuropsychological test performance following cardiac surgery. Eur J Cardiothorac Surg 29:82–88

    Article  PubMed  Google Scholar 

  8. Browne SM, Halligan PW, Wade DT et al (1999) Cognitive performance after cardiac operation: implications of regression toward the mean. J Thorac Cardiovasc Surg 117:481–485

    Article  CAS  PubMed  Google Scholar 

  9. Kneebone AC, Luszcz MA, Baker RA et al (2005) A syndromal analysis of neuropsychological outcome following coronary artery bypass graft surgery. J Neurol Neurosurg Psychiatry 76:1121–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Walzer T, Herrmann M, Wallesch CW (1997) Neuropsychological disorders after coronary bypass surgery. J Neurol Neurosurg Psychiatry 62:644–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Toner I, Taylor KM, Newman S et al (1998) Cerebral functional changes following cardiac surgery: Neuropsychological and EEG assessment. Eur J Cardiothorac Surg 13:13–20

    Google Scholar 

  12. Robson MJ, Alston RP, Deary IJ et al (2000) Cognition after coronary artery surgery is not related to postoperative jugular bulb oxyhemoglobin desaturation. Anesth Analg 91:1317–1326

    Article  CAS  PubMed  Google Scholar 

  13. Di Carlo A, Perna AM, Pantoni L et al (2001) Clinically relevant cognitive impairment after cardiac surgery: a 6-month follow-up study. J Neurol Sci 188:85–93

    Article  PubMed  Google Scholar 

  14. Millar K, Asbury AJ, Murray GD (2001) Pre-existing cognitive impairment as a factor influencing outcome after cardiac surgery. Br J Anaesth 86:63–67

    Article  CAS  PubMed  Google Scholar 

  15. Newman MF, Kirchner JL, Phillips-Bute B et al (2001) Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med 344:395–402

    Article  CAS  PubMed  Google Scholar 

  16. Stygall J, Newman SP, Fitzgerald G et al (2003) Cognitive change 5 years after coronary artery bypass surgery. Health Psychol 22:579–586

    Article  PubMed  Google Scholar 

  17. Kruis RW, Vlasveld FA, Van Dijk D (2010) The (un)importance of cerebral microemboli. Semin Cardiothorac Vasc Anesth 14:111–118

    Article  PubMed  Google Scholar 

  18. Zimpfer D, Czerny M, Vogt F et al (2004) Neurocognitive deficit following coronary artery bypass grafting: a prospective study of surgical patients and nonsurgical controls. Ann Thorac Surg 78:513–519

    Google Scholar 

  19. Kadoi Y, Goto F (2006) Factors associated with postoperative cognitive dysfunction in patients undergoing cardiac surgery. Surg Today 36:1053–1057

    Google Scholar 

  20. Ramlawi B, Rudolph JL, Mieno S et al (2006) C-reactive protein and inflammatory response associated to neurocognitive decline following cardiac surgery. Surgery 140:221–226

    Article  PubMed  Google Scholar 

  21. Ramlawi B, Rudolph JL, Mieno S et al (2006) Serologic markers of brain injury and cognitive function after cardiopulmonary bypass. Ann Surg 244:593–601

    PubMed  PubMed Central  Google Scholar 

  22. Tardiff BE, Newman MF, Saunders AM et al (1997) Preliminary report of a genetic basis for cognitive decline after cardiac operations. The Neurologic Outcome Research Group of the Duke Heart Center. Ann Thorac Surg 64:715–720

    Article  CAS  PubMed  Google Scholar 

  23. Askar FZ, Cetin HY, Kumral E et al (2005) Apolipoprotein E epsilon4 allele and neurobehavioral status after on-pump coronary artery bypass grafting. J Card Surg 20:501–505

    Google Scholar 

  24. Tagarakis G, Tsolaki-Tagaraki F, Tsolaki M et al (2007) The role of SOAT-1 polymorphisms in cognitive decline and delirium after bypass heart surgery. Clin Res Cardiol 96:600–603

    Article  CAS  PubMed  Google Scholar 

  25. Silbert BS, Scott DA, Evered LA et al (2006) A comparison of the effect of high- and low-dose fentanyl on the incidence of postoperative cognitive dysfunction after coronary artery bypass surgery in the elderly. Anesthesiology 104:1137–1145

    Article  CAS  PubMed  Google Scholar 

  26. Hudetz JA, Iqbal Z, Gandhi SD et al (2009) Ketamine attenuates post-operative cognitive dysfunction after cardiac surgery. Acta Anaesthesiol Scand 53:864–872

    Article  CAS  PubMed  Google Scholar 

  27. Schoen J, Husemann L, Tiemeyer C et al (2011) Cognitive function after sevoflurane- vs propofol-based anaesthesia for on-pump cardiac surgery: a randomized controlled trial. Br J Anaesth 106:840–850

    Article  CAS  PubMed  Google Scholar 

  28. van Harten AE, Scheeren TW, Absalom AR (2012) A review of postoperative cognitive dysfunction and neuroinflammation associated with cardiac surgery and anaesthesia. Anaesthesia 67:280–293

    Article  PubMed  Google Scholar 

  29. Lamsa R, Helisalmi S, Herukka SK et al (2007) Study on the association between SOAT1 polymorphisms, Alzheimer's disease risk and the level of CSF biomarkers. Dement Geriatr Cogn Disord 24:146–150

    Article  CAS  PubMed  Google Scholar 

  30. Moller JT, Cluitmans P, Rasmussen LS et al (1998) Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International Study of Post-Operative Cognitive Dysfunction. Lancet 351:857–861

    Article  CAS  PubMed  Google Scholar 

  31. Rasmussen LS, Steentoft A, Rasmussen H et al (1999) Benzodiazepines and postoperative cognitive dysfunction in the elderly. ISPOCD Group. International Study of Postoperative Cognitive Dysfunction. Br J Anaesth 83:585–589

    Article  CAS  PubMed  Google Scholar 

  32. Hudetz JA, Patterson KM, Iqbal Z et al (2009) Ketamine attenuates delirium after cardiac surgery with cardiopulmonary bypass. J Cardiothorac Vasc Anesth 23:651–657

    Article  CAS  PubMed  Google Scholar 

  33. Regragui I, Birdi I, Izzat MB et al (1996) The effects of cardiopulmonary bypass temperature on neuropsychologic outcome after coronary artery operations: a prospective randomized trial. J Thorac Cardiovasc Surg 112:1036–1045

    Article  CAS  PubMed  Google Scholar 

  34. Mora CT, Henson MB, Weintraub WS et al (1996) The effect of temperature management during cardiopulmonary bypass on neurologic and neuropsychologic outcomes in patients undergoing coronary revascularization. J Thorac Cardiovasc Surg 112:514–522

    Article  CAS  PubMed  Google Scholar 

  35. Grigore AM, Mathew J, Grocott HP et al (2001) Prospective randomized trial of normothermic versus hypothermic cardiopulmonary bypass on cognitive function after coronary artery bypass graft surgery. Anesthesiology 95:1110–1119

    Article  CAS  PubMed  Google Scholar 

  36. Nathan HJ, Wells GA, Munson JL et al (2001) Neuroprotective effect of mild hypothermia in patients undergoing coronary artery surgery with cardiopulmonary bypass: a randomized trial. Circulation 104:I85–I91

    Article  CAS  PubMed  Google Scholar 

  37. Nathan HJ, Rodriguez R, Wozny D et al (2007) Neuroprotective effect of mild hypothermia in patients undergoing coronary artery surgery with cardiopulmonary bypass: five-year follow-up of a randomized trial. J Thorac Cardiovasc Surg 133:1206–1211

    Article  PubMed  Google Scholar 

  38. Grigore AM, Grocott HP, Mathew JP et al (2002) The rewarming rate and increased peak temperature alter neurocognitive outcome after cardiac surgery. Anesth Analg 94:4–10

    PubMed  Google Scholar 

  39. Boodhwani M, Rubens F, Wozny D et al (2007) Effects of sustained mild hypothermia on neurocognitive function after coronary artery bypass surgery: a randomized, double-blind study. J Thorac Cardiovasc Surg 134:1443–1452

    Google Scholar 

  40. Gold JP, Charlson ME, Williams-Russo P et al (1995) Improvement of outcomes after coronary artery bypass. A randomized trial comparing intraoperative high versus low mean arterial pressure. J Thorac Cardiovasc Surg 110:1302–1314

    Google Scholar 

  41. Murkin JM, Martzke JS, Buchan AM et al (1995) A randomized study of the influence of perfusion technique and pH management strategy in 316 patients undergoing coronary artery bypass surgery. II. Neurologic and cognitive outcomes. J Thorac Cardiovasc Surg 110:349–362

    Article  CAS  PubMed  Google Scholar 

  42. Patel RL, Turtle MR, Chambers DJ et al (1996) Alpha-stat acid-base regulation during cardiopulmonary bypass improves neuropsychologic outcome in patients undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg 111:1267–1279

    Article  CAS  PubMed  Google Scholar 

  43. Mathew JP, Mackensen GB, Phillips-Bute B et al (2007) Effects of extreme hemodilution during cardiac surgery on cognitive function in the elderly. Anesthesiology 107:577–584

    Article  PubMed  Google Scholar 

  44. Butterworth J, Wagenknecht LE, Legault C et al (2005) Attempted control of hyperglycemia during cardiopulmonary bypass fails to improve neurologic or neurobehavioral outcomes in patients without diabetes mellitus undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg 130:1319

    Article  PubMed  Google Scholar 

  45. Puskas F, Grocott HP, White WD et al (2007) Intraoperative hyperglycemia and cognitive decline after CABG. Ann Thorac Surg 84:1467–1473

    Article  PubMed  Google Scholar 

  46. Whitaker DC, Newman SP, Stygall J et al (2004) The effect of leucocyte-depleting arterial line filters on cerebral microemboli and neuropsychological outcome following coronary artery bypass surgery. Eur J Cardiothorac Surg 25:267–274

    Article  PubMed  Google Scholar 

  47. Gerriets T, Schwarz N, Sammer G et al (2010) Protecting the brain from gaseous and solid micro-emboli during coronary artery bypass grafting: a randomized controlled trial. Eur Heart J 31:360–368

    Article  PubMed  Google Scholar 

  48. Heyer EJ, Lee KS, Manspeizer HE et al (2002) Heparin-bonded cardiopulmonary bypass circuits reduce cognitive dysfunction. J Cardiothorac Vasc Anesth 16:37–42

    Article  PubMed  Google Scholar 

  49. Borger MA, Peniston CM, Weisel RD et al (2001) Neuropsychologic impairment after coronary bypass surgery: effect of gaseous microemboli during perfusionist interventions. J Thorac Cardiovasc Surg 121:743–749

    Article  CAS  PubMed  Google Scholar 

  50. Stygall J, Suvarna S, Harrington J et al (2009) Effect on the brain of two techniques of myocardial protection. Asian Cardiovasc Thorac Ann 17:259–265

    Article  PubMed  Google Scholar 

  51. Abdul Aziz KA, Meduoye A (2010) Is pH-stat or alpha-stat the best technique to follow in patients undergoing deep hypothermic circulatory arrest? Interact Cardiovasc Thorac Surg 10:271–282

    Article  PubMed  Google Scholar 

  52. Brady K, Joshi B, Zweifel C et al (2010) Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass. Stroke 41:1951–1956

    Article  PubMed  Google Scholar 

  53. Mitchell SJ, Pellett O, Gorman DF (1999) Cerebral protection by lidocaine during cardiac operations. Ann Thorac Surg 67:1117–1124

    Article  CAS  PubMed  Google Scholar 

  54. Wang D, Wu X, Li J et al (2002) The effect of lidocaine on early postoperative cognitive dysfunction after coronary artery bypass surgery. Anesth Analg 95:1134–1141

    Article  CAS  PubMed  Google Scholar 

  55. Mitchell SJ, Merry AF, Frampton C et al (2009) Cerebral protection by lidocaine during cardiac operations: a follow-up study. Ann Thorac Surg 87:820–825

    Article  PubMed  Google Scholar 

  56. Mathew JP, Mackensen GB, Phillips-Bute B et al (2009) Randomized, double-blinded, placebo controlled study of neuroprotection with lidocaine in cardiac surgery. Stroke 40:880–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grieco G, d'Hollosy M, Culliford AT et al (1996) Evaluating neuroprotective agents for clinical anti-ischemic benefit using neurological and neuropsychological changes after cardiac surgery under cardiopulmonary bypass. Methodological strategies and results of a double-blind, placebo-controlled trial of GM1 ganglioside. Stroke 27:858–874

    Article  CAS  PubMed  Google Scholar 

  58. Arrowsmith JE, Harrison MJ, Newman SP et al (1998) Neuroprotection of the brain during cardiopulmonary bypass: a randomized trial of remacemide during coronary artery bypass in 171 patients. Stroke 29:2357–2362

    Article  CAS  PubMed  Google Scholar 

  59. Butterworth J, Legault C, Stump DA et al (1999) A randomized, blinded trial of the antioxidant pegorgotein: no reduction in neuropsychological deficits, inotropic drug support, or myocardial ischemia after coronary artery bypass surgery. J Cardiothorac Vasc Anesth 13:690–694

    Article  CAS  PubMed  Google Scholar 

  60. Kong RS, Butterworth J, Aveling W et al (2002) Clinical trial of the neuroprotectant clomethiazole in coronary artery bypass graft surgery: a randomized controlled trial. Anesthesiology 97:585–591

    Article  CAS  PubMed  Google Scholar 

  61. Taggart DP, Browne SM, Wade DT et al (2003) Neuroprotection during cardiac surgery: a randomised trial of a platelet activating factor antagonist. Heart 89:897–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Harmon DC, Ghori KG, Eustace NP et al (2004) Aprotinin decreases the incidence of cognitive deficit following CABG and cardiopulmonary bypass: a pilot randomized controlled study. Can J Anaesth 51:1002–1009

    Article  PubMed  Google Scholar 

  63. Mathew JP, Shernan SK, White WD et al (2004) Preliminary report of the effects of complement suppression with pexelizumab on neurocognitive decline after coronary artery bypass graft surgery. Stroke 35:2335–2339

    Article  CAS  PubMed  Google Scholar 

  64. Hogue CW Jr, Freedland K, Hershey T et al (2007) Neurocognitive outcomes are not improved by 17beta-estradiol in postmenopausal women undergoing cardiac surgery. Stroke 38:2048–2054

    Article  CAS  PubMed  Google Scholar 

  65. Malek R, Borowicz KK, Kimber-Trojnar Z et al (2003) Remacemide--a novel potential antiepileptic drug. Pol J Pharmacol 55:691–698

    Article  CAS  PubMed  Google Scholar 

  66. Diegeler A, Hirsch R, Schneider F et al (2000) Neuromonitoring and neurocognitive outcome in off-pump versus conventional coronary bypass operation. Ann Thorac Surg 69:1162–1166

    Article  CAS  PubMed  Google Scholar 

  67. Lloyd CT, Ascione R, Underwood MJ et al (2000) Serum S-100 protein release and neuropsychologic outcome during coronary revascularization on the beating heart: a prospective randomized study. J Thorac Cardiovasc Surg 119:148–154

    Article  CAS  PubMed  Google Scholar 

  68. Zamvar VY, Khan NU, Madhavan A et al (2002) Clinical outcomes in coronary artery bypass graft surgery: comparison of off-pump and on-pump techniques. Heart Surg Forum 5:109–113

    PubMed  Google Scholar 

  69. Stroobant N, Van Nooten G, Belleghem Y et al (2002) Short-term and long-term neurocognitive outcome in on-pump versus off-pump CABG. Eur J Cardiothorac Surg 22:559–564

    Article  PubMed  Google Scholar 

  70. Lee JD, Lee SJ, Tsushima WT et al (2003) Benefits of off-pump bypass on neurologic and clinical morbidity: a prospective randomized trial. Ann Thorac Surg 76:18–26

    Google Scholar 

  71. Lund C, Sundet K, Tennoe B et al (2005) Cerebral ischemic injury and cognitive impairment after off-pump and on-pump coronary artery bypass grafting surgery. Ann Thorac Surg 80:2126–2131

    Article  PubMed  Google Scholar 

  72. Cheng DC, Bainbridge D, Martin JE et al (2005) Does off-pump coronary artery bypass reduce mortality, morbidity, and resource utilization when compared with conventional coronary artery bypass? A meta-analysis of randomized trials. Anesthesiology 102:188–203

    Article  PubMed  Google Scholar 

  73. Takagi H, Tanabashi T, Kawai N et al (2007) Cognitive decline after off-pump versus on-pump coronary artery bypass graft surgery: meta-analysis of randomized controlled trials. J Thorac Cardiovasc Surg 134:512–513

    Article  PubMed  Google Scholar 

  74. Al-Ruzzeh S, George S, Bustami M et al (2006) Effect of off-pump coronary artery bypass surgery on clinical, angiographic, neurocognitive, and quality of life outcomes: randomised controlled trial. BMJ 332:1365

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ernest CS, Worcester MU, Tatoulis J et al (2006) Neurocognitive outcomes in off-pump versus on-pump bypass surgery: a randomized controlled trial. Ann Thorac Surg 81:2105–2114

    Article  PubMed  Google Scholar 

  76. Van Dijk D, Jansen EW, Hijman R et al (2002) Cognitive outcome after off-pump and on-pump coronary artery bypass graft surgery: a randomized trial. JAMA 287:1405–1412

    Article  PubMed  Google Scholar 

  77. van Dijk D, Spoor M, Hijman R et al (2007) Cognitive and cardiac outcomes 5 years after off-pump vs on-pump coronary artery bypass graft surgery. JAMA 297:701–708

    Article  PubMed  Google Scholar 

  78. Hammon JW, Stump DA, Butterworth JF et al (2006) Single crossclamp improves 6-month cognitive outcome in high-risk coronary bypass patients: the effect of reduced aortic manipulation. J Thorac Cardiovasc Surg 131:114–121

    Article  PubMed  Google Scholar 

  79. Jensen BO, Hughes P, Rasmussen LS et al (2006) Cognitive outcomes in elderly high-risk patients after off-pump versus conventional coronary artery bypass grafting: a randomized trial. Circulation 113:2790–2795

    Article  PubMed  Google Scholar 

  80. Motallebzadeh R, Bland JM, Markus HS et al (2007) Neurocognitive function and cerebral emboli: randomized study of on-pump versus off-pump coronary artery bypass surgery. Ann Thorac Surg 83:475–482

    Article  PubMed  Google Scholar 

  81. Baba T, Goto T, Maekawa K et al (2007) Early neuropsychological dysfunction in elderly high-risk patients after on-pump and off-pump coronary bypass surgery. J Anesth 21:452–458

    Article  PubMed  Google Scholar 

  82. Yin YQ, Luo AL, Guo XY et al (2007) Postoperative neuropsychological change and its underlying mechanism in patients undergoing coronary artery bypass grafting. Chin Med J 120:1951–1957

    PubMed  Google Scholar 

  83. Hernandez F Jr, Brown JR, Likosky DS et al (2007) Neurocognitive outcomes of off-pump versus on-pump coronary artery bypass: a prospective randomized controlled trial. Ann Thorac Surg 84:1897–1903

    Article  PubMed  Google Scholar 

  84. Marasco SF, Sharwood LN, Abramson MJ (2008) No improvement in neurocognitive outcomes after off-pump versus on-pump coronary revascularisation: a meta-analysis. Eur J Cardiothorac Surg 33:961–970

    Article  PubMed  Google Scholar 

  85. Jensen BO, Rasmussen LS, Steinbruchel DA (2008) Cognitive outcomes in elderly high-risk patients 1 year after off-pump versus on-pump coronary artery bypass grafting. A randomized trial. Eur J Cardiothorac Surg 34:1016–1021

    Article  PubMed  Google Scholar 

  86. Tully PJ, Baker RA, Kneebone AC et al (2008) Neuropsychologic and quality-of-life outcomes after coronary artery bypass surgery with and without cardiopulmonary bypass: a prospective randomized trial. J Cardiothorac Vasc Anesth 22:515–521

    Article  PubMed  Google Scholar 

  87. Liu YH, Wang DX, Li LH et al (2009) The effects of cardiopulmonary bypass on the number of cerebral microemboli and the incidence of cognitive dysfunction after coronary artery bypass graft surgery. Anesth Analg 109:1013–1022

    Article  PubMed  Google Scholar 

  88. Shroyer AL, Grover FL, Hattler B et al (2009) On-pump versus off-pump coronary-artery bypass surgery. N Engl J Med 361:1827–1837

    Article  CAS  PubMed  Google Scholar 

  89. Kozora E, Kongs S, Collins JF et al (2010) Cognitive outcomes after on- versus off-pump coronary artery bypass surgery. Ann Thorac Surg 90:1134–1141

    Article  PubMed  Google Scholar 

  90. Sousa Uva M, Cavaco S, Oliveira AG et al (2010) Early graft patency after off-pump and on-pump coronary bypass surgery: a prospective randomized study. Eur Heart J 31:2492–2499

    Article  PubMed  Google Scholar 

  91. Kennedy ED, Choy KC, Alston RP et al (2013) Cognitive outcome after on- and off-pump coronary artery bypass grafting surgery: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth 27:253–265

    Article  PubMed  Google Scholar 

  92. Blumenthal JA, Madden DJ, Burker EJ et al (1991) A preliminary study of the effects of cardiac procedures on cognitive performance. Int J Psychosom 38:13–16

    CAS  PubMed  Google Scholar 

  93. Hlatky MA, Bacon C, Boothroyd D et al (1997) Cognitive function 5 years after randomization to coronary angioplasty or coronary artery bypass graft surgery. Circulation 96:II–11–15

    Google Scholar 

  94. Selnes OA, Grega MA, Borowicz LM Jr et al (2003) Cognitive changes with coronary artery disease: a prospective study of coronary artery bypass graft patients and nonsurgical controls. Ann Thorac Surg 75:1377–1386

    Google Scholar 

  95. Selnes OA, Grega MA, Borowicz LM et al (2005) Cognitive outcomes three years after coronary artery bypass surgery: a comparison of on-pump coronary artery bypass graft surgery and nonsurgical controls. Ann Thorac Surg 79:1201–1209

    Article  PubMed  Google Scholar 

  96. Selnes OA, Grega MA, Bailey MM et al (2008) Cognition 6 years after surgical or medical therapy for coronary artery disease. Ann Neurol 63:581–590

    Article  PubMed  Google Scholar 

  97. Selnes OA, Grega MA, Bailey MM et al (2007) Neurocognitive outcomes 3 years after coronary artery bypass graft surgery: a controlled study. Ann Thorac Surg 84:1885–1896

    Article  PubMed  Google Scholar 

  98. Selnes OA, Grega MA, Bailey MM et al (2009) Do management strategies for coronary artery disease influence 6-year cognitive outcomes? Ann Thorac Surg 88:445–454

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wahrborg P, Booth JE, Clayton T et al (2004) Neuropsychological outcome after percutaneous coronary intervention or coronary artery bypass grafting: results from the Stent or Surgery (SoS) Trial. Circulation 110:3411–3417

    Article  PubMed  Google Scholar 

  100. Rosengart TK, Sweet JJ, Finnin E et al (2006) Stable cognition after coronary artery bypass grafting: comparisons with percutaneous intervention and normal controls. Ann Thorac Surg 82:597–607

    Article  PubMed  Google Scholar 

  101. Sweet JJ, Finnin E, Wolfe PL et al (2008) Absence of cognitive decline one year after coronary bypass surgery: comparison to nonsurgical and healthy controls. Ann Thorac Surg 85:1571–1578

    Article  PubMed  Google Scholar 

  102. Vingerhoets G, Van Nooten G, Vermassen F et al (1997) Short-term and long-term neuropsychological consequences of cardiac surgery with extracorporeal circulation. Eur J Cardiothorac Surg 11:424–431

    Article  CAS  PubMed  Google Scholar 

  103. Fearn SJ, Pole R, Wesnes K et al (2001) Cerebral injury during cardiopulmonary bypass: emboli impair memory. J Thorac Cardiovasc Surg 121:1150–1160

    Article  CAS  PubMed  Google Scholar 

  104. Sugiyama N, Kawaguchi M, Yoshitani K et al (2002) The incidence and severity of cognitive decline after major noncardiac surgery: a comparison with that after cardiac surgery with cardiopulmonary bypass. J Anesth 16:261–264

    Article  PubMed  Google Scholar 

  105. Braekken SK, Reinvang I, Russell D et al (1998) Association between intraoperative cerebral microembolic signals and postoperative neuropsychological deficit: comparison between patients with cardiac valve replacement and patients with coronary artery bypass grafting. J Neurol Neurosurg Psychiatry 65:573–576

    Article  CAS  PubMed  Google Scholar 

  106. Andrew MJ, Baker RA, Bennetts J et al (2001) A comparison of neuropsychologic deficits after extracardiac and intracaradiac surgery. J Cardiothorac Vasc Anesth 15:9–14

    Article  CAS  PubMed  Google Scholar 

  107. Ebert AD, Walzer TA, Huth C et al (2001) Early neurobehavioral disorders after cardiac surgery: a comparative analysis of coronary artery bypass graft surgery and valve replacement. J Cardiothorac Vasc Anesth 15:15–19

    Article  CAS  PubMed  Google Scholar 

  108. Zimpfer D, Czerny M, Kilo J et al (2002) Cognitive deficit after aortic valve replacement. Ann Thorac Surg 74:407–412

    Article  PubMed  Google Scholar 

  109. Hudetz JA, Iqbal Z, Gandhi SD et al (2011) Postoperative delirium and short-term cognitive dysfunction occur more frequently in patients undergoing valve surgery with or without coronary artery bypass graft surgery compared with coronary artery bypass graft surgery alone: results of a pilot study. J Cardiothorac Vasc Anesth 25:811–816

    Article  PubMed  Google Scholar 

  110. Zimpfer D, Kilo J, Czerny M et al (2003) Neurocognitive deficit following aortic valve replacement with biological/mechanical prosthesis. Eur J Cardiothorac Surg 23:544–551

    Article  PubMed  Google Scholar 

  111. Grimm M, Zimpfer D, Czerny M et al (2003) Neurocognitive deficit following mitral valve surgery. Eur J Cardiothorac Surg 23:265–271

    Article  PubMed  Google Scholar 

  112. Knipp SC, Matatko N, Schlamann M et al (2005) Small ischemic brain lesions after cardiac valve replacement detected by diffusion-weighted magnetic resonance imaging: relation to neurocognitive function. Eur J Cardiothorac Surg 28:88–96

    Article  PubMed  Google Scholar 

  113. Hong SW, Shim JK, Choi YS et al (2008) Prediction of cognitive dysfunction and patients' outcome following valvular heart surgery and the role of cerebral oximetry. Eur J Cardiothorac Surg 33:560–565

    Article  PubMed  Google Scholar 

  114. Fakin R, Zimpfer D, Sodeck GH et al (2012) Influence of temperature management on neurocognitive function in biological aortic valve replacement. A prospective randomized trial. J Cardiovasc Surgery 53:107–112

    CAS  Google Scholar 

  115. Ferrari R, Vidotto G, Muzzolon C et al (2014) Neurocognitive deficit and quality of life after mitral valve repair. J Heart Valve Dis 23:72–78

    PubMed  Google Scholar 

  116. Bruce KM, Yelland GW, Almeida AA et al (2014) Effects on cognition of conventional and robotically assisted cardiac valve operation. Ann Thorac Surg 97:48–55

    Article  PubMed  Google Scholar 

  117. Ghanem A, Kocurek J, Sinning JM et al (2013) Cognitive trajectory after transcatheter aortic valve implantation. Circ Cardiovasc Interv 6:615–624

    Article  PubMed  Google Scholar 

  118. Ergin MA, Uysal S, Reich DL et al (1999) Temporary neurological dysfunction after deep hypothermic circulatory arrest: a clinical marker of long-term functional deficit. Ann Thorac Surg 67:1887–1890

    Article  CAS  PubMed  Google Scholar 

  119. Svensson LG, Nadolny EM, Penney DL et al (2001) Prospective randomized neurocognitive and S-100 study of hypothermic circulatory arrest, retrograde brain perfusion, and antegrade brain perfusion for aortic arch operations. Ann Thorac Surg 71:1905–1912

    Article  CAS  PubMed  Google Scholar 

  120. Reich DL, Uysal S, Ergin MA et al (2001) Retrograde cerebral perfusion during thoracic aortic surgery and late neuropsychological dysfunction. Eur J Cardiothorac Surg 19:594–600

    Article  CAS  PubMed  Google Scholar 

  121. Harrington DK, Bonser M, Moss A et al (2003) Neuropsychometric outcome following aortic arch surgery: a prospective randomized trial of retrograde cerebral perfusion. J Thorac Cardiovasc Surg 126:638–644

    Article  CAS  PubMed  Google Scholar 

  122. Ozatik MA, Kucuker SA, Tuluce H et al (2004) Neurocognitive functions after aortic arch repair with right brachial artery perfusion. Ann Thorac Surg 78:591–595

    Article  PubMed  Google Scholar 

  123. Miyairi T, Takamoto S, Kotsuka Y et al (2005) Comparison of neurocognitive results after coronary artery bypass grafting and thoracic aortic surgery using retrograde cerebral perfusion. Eur J Cardiothorac Surg 28:97–103

    Google Scholar 

  124. Pacini D, Di Marco L, Leone A et al (2010) Cerebral functions and metabolism after antegrade selective cerebral perfusion in aortic arch surgery. Eur J Cardiothorac Surg 37:1322–1331

    Article  PubMed  Google Scholar 

  125. Uysal S, Mazzeffi M, Lin HM et al (2011) Internet-based assessment of postoperative neurocognitive function in cardiac and thoracic aortic surgery patients. J Thorac Cardiovasc Surg 141:777–781

    Article  PubMed  Google Scholar 

  126. Uysal S, Lin HM, Fischer GW et al (2012) Selective cerebral perfusion for thoracic aortic surgery: association with neurocognitive outcome. J Thorac Cardiovasc Surg 143:1205–1212

    Article  PubMed  Google Scholar 

  127. Reents W, Muellges W, Franke D et al (2002) Cerebral oxygen saturation assessed by near-infrared spectroscopy during coronary artery bypass grafting and early postoperative cognitive function. Ann Thorac Surg 74:109–114

    Article  PubMed  Google Scholar 

  128. Yao FS, Tseng CC, Ho CY et al (2004) Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth 18:552–558

    Article  PubMed  Google Scholar 

  129. Slater JP, Guarino T, Stack J et al (2009) Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg 87:36–45

    Google Scholar 

  130. Fudickar A, Peters S, Stapelfeldt C et al (2011) Postoperative cognitive deficit after cardiopulmonary bypass with preserved cerebral oxygenation: a prospective observational pilot study. BMC Anesthesiol 11:7

    Article  PubMed  PubMed Central  Google Scholar 

  131. de Tournay-Jette E, Dupuis G, Bherer L et al (2011) The relationship between cerebral oxygen saturation changes and postoperative cognitive dysfunction in elderly patients after coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth 25:95–104

    Article  PubMed  Google Scholar 

  132. Mohandas BS, Jagadeesh AM, Vikram SB (2013) Impact of monitoring cerebral oxygen saturation on the outcome of patients undergoing open heart surgery. Ann Card Anaesth 16:102–106

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyoshi Ishida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Ishida, K., Yamashita, A., Yamashita, S., Matsumoto, M. (2017). Present Clinical Status of Postoperative Cognitive Dysfunction in Cardiovascular Surgery. In: Morimoto, Y. (eds) Anesthesia and Neurotoxicity. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55624-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55624-4_5

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55623-7

  • Online ISBN: 978-4-431-55624-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics