Skip to main content

Characterization of G-Quadruplex DNA- and RNA-Binding Protein

  • Chapter
Long Noncoding RNAs
  • 1177 Accesses

Abstract

Mammalian telomeres containing TTAGG repeats are bound by a multiprotein complex with a telomeric repeat-containing RNA (TERRA) containing UUAGGG repeats, which is a long noncoding RNA transcribed from the telomeres. Telomere DNA and TERRA form a G-quadruplex in vitro. The functions of the G-quadruplex structures in the telomere, however, are not clear, because little is known about G-quadruplex specific binding proteins and G-quadruplex RNA-binding molecules without binding to G-quadruplex telomere DNA. We have reported that the Arg-Glu-Gly motif in Translocated in Liposarcoma (TLS) forms G-quadruplex telomere DNA and TERRA simultaneously in vitro. Furthermore, TLS promotes the methylation of hinstone H4 and H3 at lysine and regulates telomere length. These finding suggest that the G-quadruplex functions as a scaffold for telomere-binding protein, TLS. Moreover, we have shown that substitution of Tyr for Phe in the RGG motif of TLS converts its binding specificity solely toward G-quadruplex TERRA. This molecule binds to loops within the G-quadruplexes of TERRA by recognizing the 2′-OH of the riboses. It will be useful for investigating biological roles of the G-quadruplex in long noncoding RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amrane S et al (2012) Formation of pearl-necklace monomorphic G-quadruplexes in the human CEB25 minisatellite. J Am Chem Soc 134:5807–5816

    Article  CAS  PubMed  Google Scholar 

  • Arnoult N et al (2012) Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HI1α. Nat Struct Mol Biol 19:948–956

    Article  CAS  PubMed  Google Scholar 

  • Azzalin CM et al (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318:798–801

    Article  CAS  PubMed  Google Scholar 

  • Benetti R et al (2007) Suv4-20 h deficiency results in telomere elongation and derepression of telomere recombination. J Cell Biol 178:925–936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Biffi G et al (2013) Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem 5:182–186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blackburn EH et al (2006) Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 12:1133–1138

    Article  CAS  PubMed  Google Scholar 

  • Blasubramanian S et al (2011) Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat Rev Drug Discov 10:261–275

    Article  Google Scholar 

  • Bugaut A, Balasubramanian S (2012) 5′-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acid Res 40:4727–4741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cesare AJ, Reddel RR (2010) Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet 11:319–330

    Article  CAS  PubMed  Google Scholar 

  • Chiarella S et al (2013) Nucleophosmin mutations alter its nucleolar localization by impairing G-quadruplex binding at ribosomal DNA. Nucleic Acid Res 41:3228–3239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cusanelli E et al (2013) Telomeric noncoding RNA TERRA is induced by telomere shorting to nucleate telomerase molecules at short telomeres. Mol Cell 51:780–791

    Article  CAS  PubMed  Google Scholar 

  • de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110

    Article  PubMed  Google Scholar 

  • Deng Z et al (2009) TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres. Mol Cell 35:403–413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duquette ML et al (2004) Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev 18:1618–1629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huppert JL, Balasubramanian S (2007) G-quadruplexes in promoters throughout the human genome. Nucleic Acid Res 35:406–413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jayaraj GG et al (2012) Potential G-quadruplexes in the human long non-coding transcriptome. RNA Biol 9:81–86

    Article  CAS  PubMed  Google Scholar 

  • Kelleher C et al (2005) Human protection of telomeres 1 (POT1) is a negative regulator of telomerase activity in vitro. Mol Cell Biol 25:808–818

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luke B, Lingner J (2009) TERRA: telomeric repeat-containing RNA. EMBO J 28:2503–2510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luke B et al (2008) The Rat1p 5′ to 3′ exonuclease degrades telomeric repeat-containing RNA and promotes telomere elongation in Saccharomyces cerevisiae. Mol Cell 32:465–477

    Article  CAS  PubMed  Google Scholar 

  • Luu KN et al (2006) Structure of the human telomere in K+ solution: an intramolecular (3 + 1) G-quadruplex scaffold. J Am Chem Soc 128:9963–9970

    Article  CAS  PubMed  Google Scholar 

  • Matadinate H, Phan AT (2009) Structure of propeller-type parallel-etranded RNA G-quadruplexed, formed by human telomeric RNA sequences in K+ solution. J Am Chem Soc 131:2570–2578

    Article  Google Scholar 

  • Neidle S (2010) Human telomeric G-quadruplex: the current status of telomeric G-quadruplexes as therapeutic targets in human cancer. FEBS J 277:1118–1125

    Article  CAS  PubMed  Google Scholar 

  • Phan AT et al (2011) Structure-function studies of FMRP RGG peptide recognition of an RNA duplex-quadruplex junction. Nat Struct Mol Biol 18:796–804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez R et al (2012) Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat Chem Biol 8:301–310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takahama K, Oyoshi T (2013) Specific binding of modified RGG domain in TLS/FUS to G-quadruplex RNA: tyrosines in RGG domain recognize 2′-OH of the ribose of loops in G-quadruplex. J Am Chem Soc 135:18016–18019

    Article  CAS  PubMed  Google Scholar 

  • Takahama K et al (2011) Loop lengths of G-quadruplex structures affect the G-quadruplex DNA binding selectivity of the RGG motif in Ewing’s sarcoma. Biochemistry 50:5369–5378

    Article  CAS  PubMed  Google Scholar 

  • Takahama K et al (2013) Regulation of telomere length by G-quadruplex telomere DNA- and TERRA-binding protein TLS/FUS. Chem Biol 20:341–350

    Article  CAS  PubMed  Google Scholar 

  • Vannier JB et al (2012) RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell 149:795–806

    Article  CAS  PubMed  Google Scholar 

  • Wang F et al (2007) The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature 445:506–510

    Article  CAS  PubMed  Google Scholar 

  • Wang F et al (2012) Telomere- and telomerase-interacting protein that unfold telomere G-quadruplex and promotes telomere. Proc Natl Acad Sci U S A 109:20413–20418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Y et al (2010) Telomeric repeat-containing RNA structure in living cells. Proc Natl Acad Sci U S A 107:14579–14584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang C et al (2013) DNA G-quadruplex formation in response to remote downstream transcription activity: long-range sensing and signal transducing in DNA double helix. Nucleic Acid Res 41:7144–7152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng KW et al (2010) Molecular crowding creates an essential environment for the formation of stable G-quadruplexes in long double-stranded DNA. Nucleic Acid Res 38:327–338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takanori Oyoshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Oyoshi, T. (2015). Characterization of G-Quadruplex DNA- and RNA-Binding Protein. In: Kurokawa, R. (eds) Long Noncoding RNAs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55576-6_4

Download citation

Publish with us

Policies and ethics