Skip to main content

The Role of Androgen-Regulated Long Noncoding RNAs in Prostate Cancer

  • Chapter
Book cover Long Noncoding RNAs

Abstract

Recent transcriptome studies using next-generation sequencing have detected aberrant changes in the expression of long noncoding (lnc) RNA associated with cancer. Systematic analysis of transcription factor-binding sites and the regulated transcripts revealed that many lncRNAs are widely regulated at the transcriptional level. However, the functions of these transcripts have not been fully elucidated. In this study, using prostate cancer cells, we explored androgen receptor (AR)-regulated noncoding RNAs by a global transcriptome analysis. We found that the expression of a novel lncRNA (named CTBP1-AS) in the antisense region of CTBP1 (carboxyl terminal binding protein 1) is rapidly induced by androgen treatment. CTBP1-AS is enriched in the nucleus of cancer cells and promotes androgen-dependent and castration-resistant tumor growth. We further presented the novel regulatory mechanism by which CTBP1-AS mediates epigenomic transcriptional control in the nucleus. CTBP1-AS interacts with an RNA-binding transcriptional and splicing factor, SFPQ/PSF, and repressed cell cycle regulators or AR coregulators including CTBP1. Thus, we showed that the expression of this novel lncRNA is induced by androgen treatment, and the lncRNA promotes prostate cancer growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balk SP, Knudsen KE (2008) AR, the cell cycle, and prostate cancer. Nucl Recept Signal 6:e001

    PubMed Central  PubMed  Google Scholar 

  • Bergerat JP, Ceraline J (2009) Pleiotropic functional properties of androgen receptor mutants in prostate cancer. Hum Mutat 30:145–157

    Article  CAS  PubMed  Google Scholar 

  • Bergman LM et al (2009) CtBPs promote cell survival through the maintenance of mitotic fidelity. Mol Cell Biol 29:4539–4551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buchanan G et al (2001) Collocation of androgen receptor gene mutations in prostate cancer. Clin Cancer Res 7:1273–1281

    CAS  PubMed  Google Scholar 

  • Bussemakers MJ et al (1999) DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res 59:5975–5979

    CAS  PubMed  Google Scholar 

  • Cai C et al (2011) Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell 20:457–471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Callewaert L et al (2006) Interplay between two hormone-independent activation domains in the androgen receptor. Cancer Res 66:543–553

    Article  CAS  PubMed  Google Scholar 

  • Carninci P et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain NL et al (1996) Delineation of two distinct type 1 activation functions in the androgen receptor amino-terminal domain. J Biol Chem 271:26772–26778

    Article  CAS  PubMed  Google Scholar 

  • Chen CD et al (2004) Molecular determinants of resistance to antiandrogen therapy. Nat Med 10:33–39

    Article  PubMed  Google Scholar 

  • Chen Z et al (2011) Phospho-MED1-enhanced UBE2C locus looping drives castration-resistant prostate cancer growth. EMBO J 30:2405–2419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chinnadurai G (2007) Transcriptional regulation by C-terminal binding proteins. Int J Biochem Cell Biol 39:1593–1607

    Article  CAS  PubMed  Google Scholar 

  • Culig Z et al (1999) Switch from antagonist to agonist of the androgen receptor bicalutamide is associated with prostate tumour progression in a new model system. Br J Cancer 81:242–251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Debes JD, Tindall DJ (2004) Mechanism of androgen-refractory prostate cancer. N Engl J Med 351:1488–1490

    Article  CAS  PubMed  Google Scholar 

  • Dehm SM et al (2007) Selective role of an NH2-terminal WxxLF motif for aberrant androgen receptor activation in androgen depletion-independent prostate cancer cells. Cancer Res 67:10067–10077

    Article  CAS  PubMed  Google Scholar 

  • Derrien T et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Djebali S et al (2012) Landscape of transcription in human cells. Nature 489:101–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Du Z et al (2013) Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol 20:908–913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duff J et al (2006) Structural dynamics of the human androgen receptor: implications for prostate cancer and neurodegenerative disease. Biochem Soc Trans 34:1098–1102

    Article  CAS  PubMed  Google Scholar 

  • Ferreira LB et al (2013) PCA3 noncoding RNA is involved in the control of prostate-cancer cell survival and modulates androgen receptor signaling. BMC Cancer 12:507

    Article  Google Scholar 

  • Gupta RA et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gutschner T, Diederichs S (2012) The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 9:703–719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayes SA et al (2001) SMAD3 represses androgen receptor-mediated transcription. Cancer Res 61:2112–2118

    CAS  PubMed  Google Scholar 

  • Heemers HV, Tindall DJ (2007) Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev 28:778–808

    Article  CAS  PubMed  Google Scholar 

  • Heery DM et al (1997) A signature motif in transcriptional co-activatorsmediates binding to nuclear receptors. Nature 387:733–736

    Article  CAS  PubMed  Google Scholar 

  • Hessels D, Schalken JA (2009) The use of PCA3 in the diagnosis of prostate cancer. Nat Rev Urol 6:255–261

    Article  CAS  PubMed  Google Scholar 

  • Huarte M et al (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142:409–419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jenster G et al (1991) Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization. Mol Endocrinol 5:1396–1404

    Article  CAS  PubMed  Google Scholar 

  • Jenster G et al (1995) Identification of two transcription activation units in the N-terminal domain of the human androgen receptor. J Biol Chem 270:7341–7346

    Article  CAS  PubMed  Google Scholar 

  • Jia L et al (2008) Genomic androgen receptor-occupied regions with different functions, defined by histone acetylation, coregulators and transcriptional capacity. PLoS One 3:e3645

    Article  PubMed Central  PubMed  Google Scholar 

  • Kahl P et al (2006) Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res 66:11341–11347

    Article  CAS  PubMed  Google Scholar 

  • Kan Z et al (2010) Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466:869–873

    Article  CAS  PubMed  Google Scholar 

  • Katayama S et al (2005) Antisense transcription in the mammalian transcriptome. Science 309:1564–1566

    Article  PubMed  Google Scholar 

  • Kokontis JM et al (1994) Increased androgen receptor activity and altered c-myc expression in prostate cancer cells after long-term androgen deprivation. Cancer Res 54:1566–1573

    CAS  PubMed  Google Scholar 

  • Kung JT, Lee JT (2013) RNA in the loop. Dev Cell 24:565–567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee JT (2012) Epigenetic regulation by long noncoding RNAs. Science 338:1435–1439

    Article  CAS  PubMed  Google Scholar 

  • Lee GL et al (2011) Prostate cancer: diagnostic performance of the PCA3 urine test. Nat Rev Urol 8:123–124

    Article  PubMed  Google Scholar 

  • Leyten GH et al (2014) Prospective multicentre evaluation of PCA3 and TMPRSS2-ERG gene fusions as diagnostic and prognostic urinary biomarkers for prostate cancer. Eur Urol 65:534–542

    Article  CAS  PubMed  Google Scholar 

  • Lin DW et al (2013) Urinary TMPRSS2: ERG and PCA3 in an active surveillance cohort: results from a baseline analysis in the canary prostate active surveillance study. Clin Cancer Res 19:2442–2450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Locke JA et al (2008) Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res 68:6407–6415

    Article  CAS  PubMed  Google Scholar 

  • Massie CE et al (2007) New androgen receptor genomic targets show an interaction with the ETS1 transcription factor. EMBO Rep 8:871–878

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mercer TR et al (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20:300–307

    Article  CAS  PubMed  Google Scholar 

  • Metzger E et al (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437:436–439

    CAS  PubMed  Google Scholar 

  • Moran VA et al (2012) Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res 40:6391–6400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ogawa Y et al (2008) Intersection of the RNA interference and X-inactivation pathways. Science 320:1336–1341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paris PL et al (2004) Whole genome scanning identifies genotypes associated with recurrence and metastasis in prostate tumor. Hum Mol Genet 13:1303–1313

    Article  CAS  PubMed  Google Scholar 

  • Petrovics G et al (2004) Elevated expression of PCGEM1, a prostate-specific gene with cell growth-promoting function, is associated with high-risk prostate cancer patients. Oncogene 23:605–611

    Article  CAS  PubMed  Google Scholar 

  • Prensner JR et al (2011) Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 29(8):742–749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prensner JR et al (2013) The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet 45(11):1392–1398

    Article  CAS  PubMed  Google Scholar 

  • Prensner JR et al (2014) PCAT-1, a long noncoding RNA, regulates BRCA2 and controls homologous recombination in cancer. Cancer Res 74(6):1651–1660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ren S et al (2013) Long noncoding RNA MALAT-1 is a new potential therapeutic target for castration resistant prostate cancer. J Urol 190:2278–2287

    Article  CAS  PubMed  Google Scholar 

  • Rokhlin OW et al (2005) Androgen regulates apoptosis induced by TNFR family ligands via multiple signal pathway in LNCaP. Oncogene 24:6733–6784

    Article  Google Scholar 

  • Rosok O et al (2004) Systematic identification of sense–antisense transcripts in mammalian cells. Nat Biotechnol 22:104–108

    Article  CAS  PubMed  Google Scholar 

  • Schlomn T et al (2008) Clinical significance of p53 alterations in surgically treated prostate cancers. Mod Pathol 21:1371–1378

    Article  Google Scholar 

  • Schmidt LJ, Tindall DJ (2011) Steroid 5 alpha-reductase inhibitors targeting BPH and prostate cancer. J Steroid Biochem Mol Biol 125:32–38

    Article  CAS  PubMed  Google Scholar 

  • Shang Y et al (2002) Formation of the androgen receptor transcription complex. Mol Cell 9:601–610

    Article  CAS  PubMed  Google Scholar 

  • Shav-Tal Y, Zipori D (2002) PSF and p54(nrb)/NonO–multi-functional nuclear proteins. FEBS Lett 531:109–114

    Article  CAS  PubMed  Google Scholar 

  • Shenk JL et al (2001) p53 represses androgen-induced transactivation of prostate-specific antigen by disrupting hAR amino- to carboxyl-terminal interaction. J Biol Chem 276:38472–38479

    Article  CAS  PubMed  Google Scholar 

  • Shi Y et al (2003) Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422:735–738

    Article  CAS  PubMed  Google Scholar 

  • Shiraki T et al (2003) Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci U S A 100:15776–15781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song X, Sui A, Garen A (2004) Binding of mouse VL30 retrotransposon RNA to PSF protein induces genes repressed by PSF: effects on steroidogenesis and oncogenesis. Proc Natl Acad Sci U S A 101:621–626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song K et al (2010) DHT selectively reverses Smad3-mediated/TGF-beta-induced responses through transcriptional down-regulation of Smad3 in prostate epithelial cells. Mol Endocrinol 24:2019–2029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Srikantan V et al (2000) PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer. Proc Natl Acad Sci U S A 97:12216–12221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun S et al (2010) Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest 120:2715–2730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takayama K et al (2007) Identification of novel androgen response genes in prostate cancer cells by coupling chromatin immunoprecipitation and genomic microarray analysis. Oncogene 26:4453–4463

    Article  CAS  PubMed  Google Scholar 

  • Takayama K et al (2009) Amyloid precursor protein is a primary androgen target gene that promotes prostate cancer growth. Cancer Res 69:137–142

    Article  CAS  PubMed  Google Scholar 

  • Takayama K et al (2011) Integration of cap analysis of gene expression and chromatin immunoprecipitation analysis on array reveals genome-wide androgen receptor signaling in prostate cancer cells. Oncogene 30(5):619–630

    Article  CAS  PubMed  Google Scholar 

  • Takayama K et al (2012) TACC2 is an androgen-responsive cell cycle regulator promoting androgen-mediated and castration-resistant growth of prostate cancer. Mol Endocrinol 26:748–761

    Article  CAS  PubMed  Google Scholar 

  • Takayama K et al (2013) Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer. EMBO J 32:1665–1680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tan PY et al (2012) Integration of regulatory networks by NKX3-1 promotes androgen-dependent prostate cancer survival. Mol Cell Biol 32:399–414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taplin ME et al (1995) Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 332:1393–1398

    Article  CAS  PubMed  Google Scholar 

  • Taplin ME et al (2003) Androgen receptor mutations in androgen-independent prostate cancer: cancer and leukemia group B study 9663. J Clin Oncol 21:2673–2678

    Article  CAS  PubMed  Google Scholar 

  • Taylor BS et al (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18:11–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsai MC et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329(5992):689–693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Umesono K, Evans RM (1989) Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 57:1139–1146

    Article  CAS  PubMed  Google Scholar 

  • Urbanucci A et al (2012) Overexpression of androgen receptor enhances the binding of the receptor to the chromatin in prostate cancer. Oncogene 31:2153–2163

    Article  CAS  PubMed  Google Scholar 

  • Visakorpi T et al (1995) In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 9:401–406

    Article  CAS  PubMed  Google Scholar 

  • Waltering KK et al (2009) Increased expression of androgen receptor sensitizes prostate cancer cells to low levels of androgens. Cancer Res 69:8141–8149

    Article  CAS  PubMed  Google Scholar 

  • Wang Q et al (2007) A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell 27:380–392

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang Q et al (2009) Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138:245–256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang D et al (2011) Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474:390–394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wissmann M et al (2007) Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol 9:347–353

    Article  CAS  PubMed  Google Scholar 

  • Yang L et al (2013) lncRNA-dependent mechanisms of androgen-receptor regulated gene activation programs. Nature 500:598–602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yap KL et al (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a Mol. Cell 38:662–674

    CAS  Google Scholar 

  • Yu W et al (2008) Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451:202–206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu J et al (2010) An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17:443–454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou ZX et al (1995) Specificity of ligand-dependent androgen receptor stabilization: receptor domain interactions influence ligand dissociation and receptor stability. Mol Endocrinol 9:208–218

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Takayama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Takayama, Ki., Inoue, S. (2015). The Role of Androgen-Regulated Long Noncoding RNAs in Prostate Cancer. In: Kurokawa, R. (eds) Long Noncoding RNAs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55576-6_11

Download citation

Publish with us

Policies and ethics