Skip to main content

Part of the book series: SpringerBriefs in Statistics ((JSSRES))

Abstract

We consider an asymmetric logistic regression model as an example of a weighted logistic regression model, where the weights in the estimating equation vary according to the explanatory variables, thereby alleviating the imbalance of effective sample sizes between class labels \(y=0\) and \(y=1\). This model is extended to have a double robust property based on a propensity score, so that it has consistent estimators. We illustrate the utility of both models using the RAM and FAO data from fishery science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Second international symposium on information theory, pp 267–281

    Google Scholar 

  2. Arnason R, Kelleher K, Willmann R (2009) The sunken billions: the economic justification for fisheries reform. The World Bank, Washington

    Google Scholar 

  3. Bang H, Robins JM (2005) Doubly robust estimation in missing data and causal inference models. Biometrics 61:962–972

    Article  MathSciNet  Google Scholar 

  4. Bates D, Machler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4

    Google Scholar 

  5. Branch TA (2008) Not all fisheries will be collapsed in 2048. Mar Policy 32:38–39

    Article  Google Scholar 

  6. Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88:9–25

    MATH  Google Scholar 

  7. Carruthers TR, Walters CJ, McAllister MK (2012) Evaluating methods that classify fisheries stock status using only fisheries catch data. Fish Res 119:66–79

    Article  Google Scholar 

  8. Conn PB, Johnson DS, London J, Boveng PL (2012) Accounting formissing data when assessing availability in animal population surveys: an application to ice-associated seals in the Bering Sea. Methods Ecol Evol 3:1039–1046

    Article  Google Scholar 

  9. Copas J (1988) Binary regression models for contaminated data. J R Stat Soc: Ser B 50:225–265

    MathSciNet  Google Scholar 

  10. Costello C, Gaines SD, Lynham J (2008) Can catch shares prevent fisheries collapse? Science 321:1678–1681

    Article  Google Scholar 

  11. Costello C, Ovando D, Hilborn R, Gaines SD, Deschenes O, Lester SE (2012) Status and solutions for the world’s unassessed fisheries. Science 338:517–520

    Article  Google Scholar 

  12. Ellenberg JH (1994) Selection bias in observational and experimental studies. Stat Med 13:557–567

    Article  Google Scholar 

  13. Ferguson JM, Ponciano JM (2014) Predicting the process of extinction in experimental microcosms and accounting for interspecific interactions in single-species time series. Ecol Lett 17:251–259

    Article  Google Scholar 

  14. Fieberg JR, Con PB (2014) A hidden Markov model to identify and adjust for selection bias: an example involving mixed migration strategies. Ecol Evol 4:1903–1912

    Article  Google Scholar 

  15. Food and Agriculture Organization of the United Nations (1999) Food and Agricultural Organization International Plan of Action for the conservation and management of sharks (IPOA); 1999. ftp://ftp.fao.org/docrep/fao/006/x3170e/X3170E00.pdf

  16. Frair JL, Fieberg J, Hebblewhite M, Cagnacci F, DeCesare NJ, Pedrotti L (2010) Resolving issues of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data. Phil Trans R Soc B 365:2187–2200

    Article  Google Scholar 

  17. Froese R, Pauly D (2014) FishBase. World Wide Web electronic publication www.fishbase.org

  18. Froese R, Kesner-Reyes K (2002) Impact of fishing on the abundance of marine species. ICES CM 12:1–12

    Google Scholar 

  19. Froese R, Zeller D, Kleisner K, Pauly D (2012) What catch data can tell us about the status of global fisheries. Mar Biol 159:1283–1292

    Article  Google Scholar 

  20. Hayashi K (2012) A boosting method with asymmetric mislabeling probabilities which depend on covariates. Comput Stat 27:203–218

    Article  MathSciNet  Google Scholar 

  21. Hernán MA, Hernández-Díaz S, Robins JM (2004) Epidemiology 15:615–625

    Article  Google Scholar 

  22. Hilborn R, Liermann M (1998) Standing on the shoulders of giants: learning from experience in fisheries. Rev Fish Biol Fish 8:273–283

    Article  Google Scholar 

  23. Hilborn R, Ovando D (2014) Reflections on the success of traditional fisheries management. ICES J Mar Sci. https://doi.org/10.1093/icesjms/fsu034

    Article  Google Scholar 

  24. Hung H, Jou ZY, Huang SY (2018) Robust mislabel logistic regression without modeling mislabel probabilities. Biometrics 74:145–154

    Article  MathSciNet  Google Scholar 

  25. Komori O, Eguchi S, Ikeda S, Okamura H, Ichinokawa M, Nakayama S (2016) An asymmetric logistic regression model for ecological data. Methods Ecol Evol 7:249–260

    Article  Google Scholar 

  26. Komori O, Eguchi S, Saigusa Y, Okamura H, Ichinokawa M (2017) Robust bias correction model for estimation of global trend in marine populations. Ecosphere 8:1–9

    Article  Google Scholar 

  27. Kramer-Schadt S, Niedballa J, Pilgrim JD, Schröder B, Lindenborn J, Reinfelder V, Stillfried M, Heckmann I, Scharf AK, Augeri DM, Cheyne SM, Hearn AJ, Ross J, Macdonald DW, Mathai J, James Eaton, Marshall Andrew J, G.S., Rustam, R., Bernard, H., Alfred, R., Samejima, H., J. W. Duckworth and C.B.W., Belant, J.L., Hofer1, H. & Wilting, A. (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib 19:1336–1379

    Google Scholar 

  28. Maalouf M, Siddiqi M (2014) Weighted logistic regression for large-scale imbalanced and rare events data. Knowl-Based Syst 59:142–148

    Article  Google Scholar 

  29. Maalouf M, Trafalis TB (2011) Robust weighted kernel logistic regression in imbalanced and rare events data. Comput Stat Data Anal 55:168–183

    Article  MathSciNet  Google Scholar 

  30. Mace PM (1994) Relationships between common biological reference points used as thresholds and targets of fisheries management strategies. Can J Fish Aquat Sci 51:110–122

    Article  Google Scholar 

  31. Manski CF, Lerman SR (1977) The estimation of choice probabilities from choice based samples. Econometrica 45:1977–1988

    Article  MathSciNet  Google Scholar 

  32. Melnychuk MC, Essington TE, Branch TA, Heppell SS, Jensen OP, Link JS, Martell SJD, Parma AM, Pope JG, Smith ADM (2012) Can catch share fisheries better track management targets? Fish Fish 13:267–290

    Article  Google Scholar 

  33. Myers RA, Bridson J, Barrowman NJ (1995) Summary of worldwide spawner and recruitment data. Canadian technical report of fisheries and aquatic sciences. No. 2020, p 312

    Google Scholar 

  34. Myers RA, Hutchings JA, Barrowman NJ (1997) Why do fish stocks collapse? the example of cod in Atlantic Canada. Ecol Appl 7:91–106

    Article  Google Scholar 

  35. Pauly D (2007a) Obituary: Ransom Aldrich Myers (1952–2007). Nature 447:160

    Article  Google Scholar 

  36. Pauly D (2007b) The sea around us project: documenting and communicating global fisheries impacts on marine ecosystems. J Hum Environ 36:290–295

    Article  Google Scholar 

  37. Pauly D, Christensen V, Dalsgaard J, Froese R, Jr., FT (1998) How Pervasive is “Fishing downmarine food webs”? Science 282:1839

    Google Scholar 

  38. Pauly D, Hilborn R, Branch TA (2013) Fisheries: does catch reflect abundance? Nature 494:303–306

    Article  Google Scholar 

  39. Pinsky ML, Jensen OP, Ricardc D, Palumbi SR (2011) Unexpected patterns of fisheries collapse in the world’s oceans. Proc Natl Acad Sci U S A 108:8317–8322

    Article  Google Scholar 

  40. Ricard D, Minto C, Jensen OP, Baum JK (2012) Examining the knowledge base and status of commercially exploited marine species with the RAM legacy stock assessment database. Fish Fish 13:380–398

    Article  Google Scholar 

  41. Rosenbaum PR, Rubin DB (1983) The central role of the propensity score in observational studies for causal effects. Biometrics 70:41–55

    Article  MathSciNet  Google Scholar 

  42. Scharfstein DO, Rotnitzky A, Robins JM (1999) Adjusting for nonignorable drop-out using semiparametric nonresponse models. J Am Stat Assoc 94:1096–1120 (with Rejoinder, 1135–1146)

    Google Scholar 

  43. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  MathSciNet  Google Scholar 

  44. Takenouchi T, Eguchi S (2004) Robustifying AdaBoost by adding the naive error rate. Neural Comput 16:767–787

    Article  Google Scholar 

  45. Thorson JT, Branch TA, Jensen OP (2012) Using model-based inference to evaluate global fisheries status from landings, location, and life history data. Can J Fish Aquat Sci 69:645–655

    Article  Google Scholar 

  46. Thorson JT, Cope JM, Kleisner KM, Samhouri JF, Shelton AO, Ward EJ (2015) Giants’ shoulders 15 years later: lessons, challenges and guidelines in fisheries meta-analysis. Fish Fish 16:342–361

    Article  Google Scholar 

  47. Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JBC, Lotze HK, Micheli F, Palumbi SR, Sala E, Selkoe KA, Stachowicz JJ, Watson R (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790

    Article  Google Scholar 

  48. Worm B, Hilborn R, Baum JK, Branch TA, Collie JS, Costello C, Fogarty MJ, Fulton EA, Hutchings JA, Jennings S, Jensen OP, Lotze HK, Mace PM, McClanahan TR, Minto C, Palumbi SR, Parma AM, Ricard D, Rosenberg AA, Watson R, Zeller D (2009) Rebuilding global fisheries. Science 325:578–585

    Article  Google Scholar 

  49. Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Komori .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Japan KK

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Komori, O., Eguchi, S. (2019). Weighted Logistic Regression. In: Statistical Methods for Imbalanced Data in Ecological and Biological Studies. SpringerBriefs in Statistics(). Springer, Tokyo. https://doi.org/10.1007/978-4-431-55570-4_2

Download citation

Publish with us

Policies and ethics