Skip to main content

Actin Filament Formation in Myofibrils and Cell Protrusions Regulated by Signal Transduction

  • Chapter
Protein Modifications in Pathogenic Dysregulation of Signaling
  • 547 Accesses

Abstract

Actin filaments play crucial roles in a wide variety of cellular functions in all eukaryotic cell types. Typically, they are essential for muscle contraction as thin filaments of contractile myofibrils and for cell migration as components of stress fibers, filopodia, and lamellipodia. Specific actin nucleation factors and elongation factors participate in actin filament formation depending on cell types and actin filament-containing structures. The formation of actin filaments as well as their dynamics is regulated by complicated signaling mechanisms. We summarize here molecular and signaling mechanisms of actin filament formation of myofibrils and cytonemes, a special type of cell protrusions involved in intercellular signaling, focusing on our recent research on these subjects. Myofibrils are well-known muscle contractile structures consisting mainly of actin and myosin filaments. However, molecular and signaling mechanisms of their formation have been obscure. We have elucidated the mechanisms of skeletal muscle myofibrillar actin filament formation induced by insulin-like growth factor 1 (IGF-1). IGF-1-stimulated phosphatidylinositol 3-kinase–Akt signaling induces the formation of the nebulin–N-WASP complex, which nucleates actin and forms actin filaments from the Z-bands. We have also examined the mechanisms of myofibrillar actin filament formation in cardiac muscle, in which nebulin is absent. On the other hand, cytonemes represent novel highly efficient, long-range intercellular signaling machinery. We have found that fibroblast growth factor signaling causes activation of RhoD, which in turn activates mDia3C to form actin filaments leading to cytoneme formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bang ML, Li X, Littlefield R, Bremner S, Thor A, Knowlton KU, Lieber RL, Chen J (2006) Nebulin-deficient mice exhibit shorter thin filament lengths and reduced contractile function in skeletal muscle. J Cell Biol 173:905–916

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019

    Article  PubMed  CAS  Google Scholar 

  • Campellone KG, Welch MD (2010) A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol 11:237–251

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chargé SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238

    Article  PubMed  Google Scholar 

  • Chereau D, Boczkowska M, Skwarek-Maruszewska A, Fujiwara I, Hayes DB, Rebowski G, Lappalainen P, Pollard TD, Dominguez R (2008) Leiomodin is an actin filament nucleator in muscle cells. Science 320:239–243

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chesarone MA, Goode BL (2009) Actin nucleation and elongation factors: mechanisms and interplay. Curr Opin Cell Biol 21:28–37

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chesarone MA, DuPage AG, Goode BL (2010) Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat Rev Mol Cell Biol 11:62–74

    Article  PubMed  CAS  Google Scholar 

  • Chhabra ES, Higgs HN (2007) The many faces of actin: matching assembly factors with cellular structures. Nat Cell Biol 9:1110–1121

    Article  PubMed  CAS  Google Scholar 

  • Davis DM, Sowinski S (2008) Membrane nanotubes: dynamic long-distance connections between animal cells. Nat Rev Mol Cell Biol 9:431–436

    Article  PubMed  CAS  Google Scholar 

  • Dominguez R (2009) Actin filament nucleation and elongation factors–structure-function relationships. Crit Rev Biochem Mol Biol 44:351–366

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Endo T (2007) Stem cells and plasticity of skeletal muscle cell differentiation: potential application to cell therapy for degenerative muscular diseases. Regen Med 2:243–256

    Article  PubMed  CAS  Google Scholar 

  • Faix J, Breitsprecher D, Stradal TE, Rottner K (2009) Filopodia: complex models for simple rods. Int J Biochem Cell Biol 41:1656–1664

    Article  PubMed  CAS  Google Scholar 

  • Gokhin DS, Fowler VM (2013) A two-segment model for thin filament architecture in skeletal muscle. Nat Rev Mol Cell Biol 14:113–119

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Goley ED, Welch MD (2006) The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol 7:713–726

    Article  PubMed  CAS  Google Scholar 

  • Gradilla AC, Guerrero I (2013) Cytoneme-mediated cell-to-cell signaling during development. Cell Tissue Res 352:59–66

    Article  PubMed  CAS  Google Scholar 

  • Harvey PA, Leinwand LA (2011) The cell biology of disease: cellular mechanisms of cardiomyopathy. J Cell Biol 194:355–365

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hsiung F, Ramirez-Weber FA, Iwaki DD, Kornberg TB (2005) Dependence of Drosophila wing imaginal disc cytonemes on Decapentaplegic. Nature (Lond) 437:560–563

    Article  CAS  Google Scholar 

  • Jefferies JL, Towbin JA (2010) Dilated cardiomyopathy. Lancet 375:752–762

    Article  PubMed  Google Scholar 

  • Kawamura K, Takano K, Suetsugu S, Kurisu S, Yamazaki D, Miki H, Takenawa T, Endo T (2004) N-WASP and WAVE2 acting downstream of phosphatidylinositol 3-kinase are required for myogenic cell migration induced by hepatocyte growth factor. J Biol Chem 279:54862–54871

    Article  PubMed  CAS  Google Scholar 

  • Koizumi K, Takano K, Kaneyasu A, Watanabe-Takano H, Tokuda E, Abe T, Watanabe N, Takenawa T, Endo T (2012) RhoD activated by fibroblast growth factor induces cytoneme-like cellular protrusions through mDia3C. Mol Biol Cell 23:4647–4661

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kornberg TB, Roy S (2014) Cytonemes as specialized signaling filopodia. Development (Camb) 141:729–736

    Article  CAS  Google Scholar 

  • Labeit S, Ottenheijm CA, Granzier H (2011) Nebulin, a major player in muscle health and disease. FASEB J 25:822–829

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ladwein M, Rottner K (2008) On the Rho’d: the regulation of membrane protrusions by Rho-GTPases. FEBS Lett 582:2066–2074

    Article  PubMed  CAS  Google Scholar 

  • Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lehtokari VL, Pelin K, Sandbacka M, Ranta S, Donner K, Muntoni F, Sewry C, Angelini C, Bushby K, Van den Bergh P, Iannaccone S, Laing NG, Wallgren-Pettersson C (2006) Identification of 45 novel mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Hum Mutat 27:946–956

    Article  PubMed  CAS  Google Scholar 

  • Littlefield RS, Fowler VM (2008) Thin filament length regulation in striated muscle sarcomeres: pointed-end dynamics go beyond a nebulin ruler. Semin Cell Dev Biol 19:511–519

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6:458–471

    Article  PubMed  CAS  Google Scholar 

  • Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9:446–454

    Article  PubMed  CAS  Google Scholar 

  • Mellor H (2010) The role of formins in filopodia formation. Biochim Biophys Acta 1803:191–200

    Article  PubMed  CAS  Google Scholar 

  • Murphy C, Saffrich R, Grummt M, Gournier H, Rybin V, Rubino M, Auvinen P, Lütcke A, Parton RG, Zerial M (1996) Endosome dynamics regulated by a Rho protein. Nature (Lond) 384:427–432

    Article  CAS  Google Scholar 

  • Önfelt B, Nedvetzki S, Yanagi K, Davis DM (2004) Cutting edge: membrane nanotubes connect immune cells. J Immunol 173:1511–1513

    Article  PubMed  Google Scholar 

  • Pollak M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8:915–928

    Article  PubMed  CAS  Google Scholar 

  • Purevjav E, Varela J, Morgado M, Kearney DL, Li H, Taylor MD, Arimura T, Moncman CL, McKenna W, Murphy RT, Labeit S, Vatta M, Bowles NE, Kimura A, Boriek AM, Towbin JA (2010) Nebulette mutations are associated with dilated cardiomyopathy and endocardial fibroelastosis. J Am Coll Cardiol 56:1493–1502

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramírez-Weber FA, Kornberg TB (1999) Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97:599–607

    Article  PubMed  Google Scholar 

  • Ridley AJ (2011) Life at the leading edge. Cell 145:1012–1022

    Article  PubMed  CAS  Google Scholar 

  • Rommel C, Clarke BA, Zimmermann S, Nuñez L, Rossman R, Reid K, Moelling K, Yancopoulos GD, Glass DJ (1999) Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science 286:1738–1741

    Article  PubMed  CAS  Google Scholar 

  • Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3:1009–1013

    Article  PubMed  CAS  Google Scholar 

  • Roy S, Hsiung F, Kornberg TB (2011) Specificity of Drosophila cytonemes for distinct signaling pathways. Science 332:354–358

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Roy S, Huang H, Liu S, Kornberg TB (2014) Cytoneme-mediated contact-dependent transport of the Drosophila Decapentaplegic signaling protein. Science 343:1244624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010

    Article  PubMed  CAS  Google Scholar 

  • Sanders TA, Llagostera E, Barna M (2013) Specialized filopodia direct long-range transport of SHH during vertebrate tissue patterning. Nature (Lond) 497:628–632

    Article  CAS  Google Scholar 

  • Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–412

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Skwarek-Maruszewska A, Boczkowska M, Zajac AL, Kremneva E, Svitkina T, Dominguez R, Lappalainen P (2010) Different localizations and cellular behaviors of leiomodin and tropomodulin in mature cardiomyocyte sarcomeres. Mol Biol Cell 21:3352–3361

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14:395–403

    Article  PubMed  CAS  Google Scholar 

  • Takano K, Watanabe-Takano H, Suetsugu S, Kurita S, Tsujita K, Kimura S, Karatsu T, Takenawa T, Endo T (2010) Nebulin and N-WASP cooperate to cause IGF-1-induced sarcomeric actin filament formation. Science 330:1536–1540

    Article  PubMed  CAS  Google Scholar 

  • Takenawa T, Suetsugu S (2007) The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 8:37–48

    Article  PubMed  CAS  Google Scholar 

  • Tsubakimoto K, Matsumoto K, Abe H, Ishii J, Amano M, Kaibuchi K, Endo T (1999) Small GTPase RhoD suppresses cell migration and cytokinesis. Oncogene 18:2431–2440

    Article  PubMed  CAS  Google Scholar 

  • Tsukada T, Pappas CT, Moroz N, Antin PB, Kostyukova AS, Gregorio CC (2010) Leiomodin-2 is an antagonist of tropomodulin-1 at the pointed end of the thin filaments in cardiac muscle. J Cell Sci 123:3136–3145

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wallgren-Pettersson C, Sewry CA, Nowak KJ, Laing NG (2011) Nemaline myopathies. Semin Pediatr Neurol 18:230–238

    Article  PubMed  Google Scholar 

  • Wang X, Gerdes HH (2012) Long-distance electrical coupling via tunneling nanotubes. Biochim Biophys Acta 1818:2082–2086

    Article  PubMed  CAS  Google Scholar 

  • Witt CC, Burkart C, Labeit D, McNabb M, Wu Y, Granzier H, Labeit S (2006) Nebulin regulates thin filament length, contractility, and Z-disk structure in vivo. EMBO J 25:3843–3855

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xu Q, Wu Z (2000) The insulin-like growth factor-phosphatidylinositol 3-kinase-Akt signaling pathway regulates myogenin expression in normal myogenic cells but not in rhabdomyosarcoma-derived RD cells. J Biol Chem 275:36750–36757

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto DL, Vitiello C, Zhang J, Gokhin DS, Castaldi A, Coulis G, Piaser F, Filomena MC, Eggenhuizen PJ, Kunderfranco P, Camerini S, Takano K, Endo T, Crescenzi M, Luther PK, Lieber RL, Chen J, Bang ML (2013) The nebulin SH3 domain is dispensable for normal skeletal muscle structure but is required for effective active load bearing in mouse. J Cell Sci 126:5477–5489

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang C, Svitkina T (2011) Filopodia initiation: focus on the Arp2/3 complex and formins. Cell Adhes Migr 5:402–408

    Article  Google Scholar 

  • Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93:23–67

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

Our study is supported by Grants-in-Aid for Scientific Research on Innovative Areas (23117506 and 25117706) from the Ministry of Education, Culture, Sports, Science, and Technology; Grants-in-Aid for Scientific Research (B) (23300144), for Young Scientists (B) (24770118), and for Challenging Exploratory Research (25670104) from Japan Society for the Promotion of Science; and Intramural Research Grant (23–5) for Neurological and Psychiatric Disorders of National Center of Neurology and Psychiatry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Endo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Endo, T., Takano, K. (2015). Actin Filament Formation in Myofibrils and Cell Protrusions Regulated by Signal Transduction. In: Inoue, Ji., Takekawa, M. (eds) Protein Modifications in Pathogenic Dysregulation of Signaling. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55561-2_18

Download citation

Publish with us

Policies and ethics