Skip to main content

Critical Roles of the AKT Substrate Girdin in Disease Initiation and Progression

  • Chapter
Protein Modifications in Pathogenic Dysregulation of Signaling

Abstract

Many studies conducted over the past several decades have firmly established the roles of the serine/threonine kinase AKT and its upstream regulator phosphatidylinositol 3-kinase (PI3K) in the progression of a wide variety of human diseases, including cancers and metabolic, psychiatric, neurodegenerative, and cardiovascular diseases. Sited downstream from various growth factors and their cognate receptors, dysregulation of the PI3K/AKT pathway (and its downstream substrates) is unambiguously linked to the etiology of the diseases, most of which frequently result from mutations in genes encoding the constituents of the pathway or their deregulated expression caused by aberrant promoter activation. These observations provided the rationale for the development of new drugs targeting AKT kinase. However, this approach became far more difficult than initially anticipated. Consequently, an alternative strategy has evolved to target AKT substrates that differentially and selectively regulate many cellular processes and are involved in the modulation and progression of diseases. In this chapter, we describe how alterations in the function of AKT substrates, which are generally not involved in directly driving disease, contribute to the modulation of those diseases. We principally focus on Girdin, an AKT substrate that is involved in the progression of cancer and neural disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal AK, Garg A (2006) Genetic disorders of adipose tissue development, differentiation, and death. Annu Rev Genomics Hum Genet 7:175–199 doi:10.1146/annurev.genom.7.080505.115715

  • Altomare DA, Testa JR (2005) Perturbations of the AKT signaling pathway in human cancer. Oncogene 24(50):7455–7464. doi:10.1038/sj.onc.1209085

    Article  CAS  PubMed  Google Scholar 

  • Anai M, Shojima N, Katagiri H, Ogihara T, Sakoda H, Onishi Y, Ono H, Fujishiro M, Fukushima Y, Horike N, Viana A, Kikuchi M, Noguchi N, Takahashi S, Takata K, Oka Y, Uchijima Y, Kurihara H, Asano T (2005) A novel protein kinase B (PKB)/AKT-binding protein enhances PKB kinase activity and regulates DNA synthesis. J Biol Chem 280(18):18525–18535. doi:10.1074/jbc.M500586200

    Article  CAS  PubMed  Google Scholar 

  • Armstrong L, Hughes O, Yung S, Hyslop L, Stewart R, Wappler I, Peters H, Walter T, Stojkovic P, Evans J, Stojkovic M, Lako M (2006) The role of PI3K/AKT, MAPK/ERK and NFkappabeta signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Hum Mol Genet 15(11):1894–1913. doi:10.1093/hmg/ddl112

    Article  CAS  PubMed  Google Scholar 

  • Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, Flanagan A, Teague J, Futreal PA, Stratton MR, Wooster R (2004) The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer 91(2):355–358. doi:10.1038/sj.bjc.6601894

    CAS  PubMed Central  PubMed  Google Scholar 

  • Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, Lawrence MS, Sivachenko AY, Sougnez C, Zou L, Cortes ML, Fernandez-Lopez JC, Peng S, Ardlie KG, Auclair D, Bautista-Pina V, Duke F, Francis J, Jung J, Maffuz-Aziz A, Onofrio RC, Parkin M, Pho NH, Quintanar-Jurado V, Ramos AH, Rebollar-Vega R, Rodriguez-Cuevas S, Romero-Cordoba SL, Schumacher SE, Stransky N, Thompson KM, Uribe-Figueroa L, Baselga J, Beroukhim R, Polyak K, Sgroi DC, Richardson AL, Jimenez-Sanchez G, Lander ES, Gabriel SB, Garraway LA, Golub TR, Melendez-Zajgla J, Toker A, Getz G, Hidalgo-Miranda A, Meyerson M (2012) Sequence analysis of mutations and translocations across breast cancer subtypes. Nature (Lond) 486(7403):405–409. doi:10.1038/nature11154

    Article  CAS  Google Scholar 

  • Bellacosa A, Defeo D, Godwin AK, Bell DW, Cheng JQ, Altomare DA, Wan MH, Dubeau L, Scambia G, Masciullo V, Ferrandina G, Panici PB, Mancuso S, Neri G, Testa JR (1995) Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer 64(4):280–285. doi:10.1002/ijc.2910640412

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw NJ, Porteous DJ (2012) DISC1-binding proteins in neural development, signalling and schizophrenia. Neuropharmacology 62(3):1230–1241. doi:10.1016/j.neuropharm.2010.12.027

    Article  CAS  PubMed  Google Scholar 

  • Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296(5573):1655–1657. doi:10.1126/science.296.5573.1655

    Article  CAS  PubMed  Google Scholar 

  • Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S, Uhlik M, Lin A, Du J, Qian Y-W, Zeckner DJ, Tucker-Kellogg G, Touchman J, Patel K, Mousses S, Bittner M, Schevitz R, Lai M-HT, Blanchard KL, Thomas JE (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature (Lond) 448(7152):439–444. doi:10.1038/nature05933

    Article  CAS  Google Scholar 

  • Chen M, Gu J, Delclos GL, Killary AM, Fan Z, Hildebrandt MAT, Chamberlain RM, Grossman HB, Dinney CP, Wu X (2010) Genetic variations of the PI3K-AKT-mTOR pathway and clinical outcome in muscle invasive and metastatic bladder cancer patients. Carcinogenesis (Oxf) 31(8):1387–1391. doi:10.1093/carcin/bgq110

    Article  CAS  Google Scholar 

  • Chin YR, Toker A (2010) The actin-bundling protein palladin is an Akt1-specific substrate that regulates breast cancer cell migration. Mol Cell 38(3):333–344. doi:10.1016/j.molcel.2010.02.031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chin YR, Toker A (2011) Akt isoform-specific signaling in breast cancer uncovering an anti-migratory role of palladin. Cell Adhes Migr 5(3):211–214. doi:10.4161/cam.5.3.15790

    Article  Google Scholar 

  • Cohen MM Jr (2013) The AKT genes and their roles in various disorders. Am J Med Genet A 161(12):2931–2937. doi:10.1002/ajmg.a.36101

    Article  CAS  Google Scholar 

  • Cully M, You H, Levine AJ, Mak TW (2006) Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6(3):184–192. doi:10.1038/nrc1819

    Article  CAS  PubMed  Google Scholar 

  • Davies MA, Stemke-Hale K, Tellez C, Calderone TL, Deng W, Prieto VG, Lazar AJF, Gershenwald JE, Mills GB (2008) A novel AKT3 mutation in melanoma tumours and cell lines. Br J Cancer 99(8):1265–1268. doi:10.1038/sj.bjc.6604637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dimmeler S, Zeiher AM (2000) Akt takes center stage in angiogenesis signaling. Circ Res 86(1):4–5

    Article  CAS  PubMed  Google Scholar 

  • Dorrell MI, Friedlander M (2006) Mechanisms of endothelial cell guidance and vascular patterning in the developing mouse retina. Prog Retin Eye Res 25(3):277–295

    Article  PubMed  Google Scholar 

  • Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y, Liu X-b, Yang C-H, Jordan JD, Ma DK, Liu CY, Ganesan S, Cheng H-J, Ming G-l, Lu B, Song H (2007) Disrupted-in-schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 130(6):1146–1158. doi:10.1016/j.cell.2007.07.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dunkel Y, Ong A, Notani D, Mittal Y, Lam M, Mi X, Ghosh P (2012) STAT3 protein up-regulates Gα-interacting vesicle-associated protein (GIV)/Girdin expression, and GIV enhances STAT3 activation in a positive feedback loop during wound healing and tumor invasion/metastasis. J Biol Chem 287(50):41667–41683. doi:10.1074/jbc.M112.390781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA (2004) Convergent evidence for impaired AKT1-GSK3β signaling in schizophrenia. Nat Genet 36(2):131–137. doi:10.1038/ng1296

    Article  CAS  PubMed  Google Scholar 

  • Enomoto A, Murakami H, Asai N, Morone N, Watanabe T, Kawai K, Murakumo Y, Usukura J, Kaibuchi K, Takahashi M (2005) Akt/PKB regulates actin organization and cell motility via girdin/APE. Dev Cell 9(3):389–402. doi:10.1016/j.devcel.2005.08.001

    Article  CAS  PubMed  Google Scholar 

  • Enomoto A, Ping J, Takahashi M (2006) Girdin, a novel actin-binding protein, and its family of proteins possess versatile functions in the Akt and Wnt signaling pathways. In: Sobue G, Takahashi M, Yoshida J, Kaibuchi K, Naoe T, Lahiri DK (eds) Integrated molecular medicine for neuronal and neoplastic disorders. Ann N Y Acad Sci 1086:169–184. doi:10.1196/annals.1377.016

  • Enomoto A, Asai N, Namba T, Wang Y, Kato T, Tanaka M, Tatsumi H, Taya S, Tsuboi D, Kuroda K, Kaneko N, Sawamoto K, Miyamoto R, Jijiwa M, Murakumo Y, Sokabe M, Seki T, Kaibuchi K, Takahashi M (2009) Roles of disrupted-in-schizophrenia 1-interacting protein girdin in postnatal development of the dentate gyrus. Neuron 63(6):774–787. doi:10.1016/j.neuron.2009.08.015

    Article  CAS  PubMed  Google Scholar 

  • Fruman DA, Rommel C (2014) PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 13(2):140–156. doi:10.1038/nrd4204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Marcos M, Ghosh P, Farquhar MG (2009) GIV is a nonreceptor GEF for Gαi with a unique motif that regulates Akt signaling. Proc Natl Acad Sci U S A 106(9):3178–3183. doi:10.1073/pnas.0900294106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Marcos M, Jung BH, Ear J, Cabrera B, Carethers JM, Ghosh P (2011) Expression of GIV/Girdin, a metastasis-related protein, predicts patient survival in colon cancer. FASEB J 25(2):590–599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gariano RF, Gardner TW (2004) Retinal angiogenesis in development and disease. Nature (Lond) 438(7070):960–966

    Article  CAS  Google Scholar 

  • George S, Rochford JJ, Wolfrum C, Gray SL, Schinner S, Wilson JC, Soos MA, Murgatroyd PR, Williams RM, Acerini CL, Dunger DB, Barford D, Umpleby AM, Wareham NJ, Davies HA, Schafer AJ, Stoffel M, O’Rahilly S, Barroso I (2004) A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science 304(5675):1325–1328. doi:10.1126/science.1096706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ghosh P, Garcia-Marcos M, Bornheimer SJ, Farquhar MG (2008) Activation of Gαi3 triggers cell migration via regulation of GIV. J Cell Biol 182(2):381–393. doi:10.1083/jcb.200712066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez E, McGraw TE (2009) Insulin-modulated Akt subcellular localization determines Akt isoform-specific signaling. Proc Natl Acad Sci U S A 106(17):7004–7009. doi:10.1073/pnas.0901933106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grabiner BC, Nardi V, Birsoy K, Possemato R, Shen K, Sinha S, Jordan A, Beck AH, Sabatini DM (2014) A diverse array of cancer-associated mTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov 4(5):554–563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hay N (2005) The Akt-mTOR tango and its relevance to cancer. Cancer Cell 8(3):179–183. doi:10.1016/j.ccr.2005.08.008

    Article  CAS  PubMed  Google Scholar 

  • Hennessy BT, Smith DL, Ram PT, Lu YL, Mills GB (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4(12):988–1004. doi:10.1038/nrd1902

    Article  CAS  PubMed  Google Scholar 

  • Hers I, Vincent EE, Tavare JM (2011) Akt signalling in health and disease. Cell Signal 23(10):1515–1527. doi:10.1016/j.cellsig.2011.05.004

    Article  CAS  PubMed  Google Scholar 

  • Hollander MC, Blumenthal GM, Dennis PA (2011) PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer 11(4):289–301. doi:10.1038/nrc3037

    Article  CAS  PubMed  Google Scholar 

  • Hussain K, Challis B, Rocha N, Payne F, Minic M, Thompson A, Daly A, Scott C, Harris J, Smillie BJL, Savage DB, Ramaswami U, De Lonlay P, O’Rahilly S, Barroso I, Semple RK (2011) An activating mutation of AKT2 and human hypoglycemia. Science 334(6055):474. doi:10.1126/science.1210878

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ikeda M, Iwata N, Suzuki T, Kitajima T, Yamanouchi Y, Kinoshita Y, Inada T, Ozaki N (2004) Association of AKT1 with schizophrenia confirmed in a Japanese population. Biol Psychiatry 56(9):698–700. doi:10.1016/j.biopsych.2004.07.023

    Article  CAS  PubMed  Google Scholar 

  • Inoki K, Li Y, Zhu TQ, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4(9):648–657. doi:10.1038/ncb839

    Article  CAS  PubMed  Google Scholar 

  • Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, Yang Q, Bennett C, Harada Y, Stankunas K, Wang C-Y, He X, MacDougald OA, You M, Williams BO, Guan K-L (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126(5):955–968. doi:10.1016/j.cell.2006.06.055

    Article  CAS  PubMed  Google Scholar 

  • Irie HY, Pearline RV, Grueneberg D, Hsia M, Ravichandran P, Kothari N, Natesan S, Brugge JS (2005) Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition. J Cell Biol 171(6):1023–1034. doi:10.1083/jcb.200505087

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ishida-Takagishi M, Enomoto A, Asai N, Ushida K, Watanabe T, Hashimoto T, Kato T, Weng L, Matsumoto S, Asai M, Murakumo Y, Kaibuchi K, Kikuchi A, Takahashi M (2012) The dishevelled-associating protein Daple controls the non-canonical Wnt/Rac pathway and cell motility. Nat Commun 3:859. doi:10.1038/ncomms1861

  • Ito T, Komeima K, Yasuma T, Enomoto A, Asai N, Asai M, Iwase S, Takahashi M, Terasaki H (2013) Girdin and its phosphorylation dynamically regulate neonatal vascular development and pathological neovascularization in the retina. Am J Pathol 182(2):586–596. doi:10.1016/j.ajpath.2012.10.012

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Guo W, Liang XH, Rao Y (2005) Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3β and its upstream regulators. Cell 120(1):123–135. doi:10.1016/j.cell.2004.12.033

    CAS  PubMed  Google Scholar 

  • Jiang P, Enomoto A, Jijiwa M, Kato T, Hasegawa T, Ishida M, Sato T, Asai N, Murakumo Y, Takahashi M (2008) An actin-binding protein girdin regulates the motility of breast cancer cells. Cancer Res 68(5):1310–1318. doi:10.1158/0008-5472.can-07-5111

    Article  CAS  PubMed  Google Scholar 

  • Jiang P, Cui S-P, Ren Y-L, Mao J-Z, Liu H-J, Tian Y, Liu J-Y, Du J, Hou L, Zhang B (2013) Girdin correlated with autophagy in invasive ductal breast carcinomas. Tumori 99(4):530–534

    PubMed  Google Scholar 

  • Jin F, Liu C, Guo Y, Chen H, Wu Y (2013) Clinical implications of Girdin and PI3K protein expression in breast cancer. Oncol Lett 5(5):1549–1553. doi:10.3892/ol.2013.1249

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jun BY, Kim SW, Jung CK, Cho YK, Lee IS, Choi M-G, Choi KY, Oh ST (2012) Expression of girdin in human colorectal cancer and its association with tumor progression. J Gastroenterol Hepatol 27:335

    Google Scholar 

  • Jun BY, Kim SW, Jung CK, Cho YK, Lee IS, Choi M-G, Choi KY, Oh ST (2013) Expression of girdin in human colorectal cancer and its association with tumor progression. Dis Colon Rectum 56(1):51–57. doi:10.1097/DCR.0b013e31826b9b7e

    Article  PubMed  Google Scholar 

  • Kempermann G, Krebs J, Fabel K (2008) The contribution of failing adult hippocampal neurogenesis to psychiatric disorders. Curr Opin Psychiatry 21(3):290–295. doi:10.1097/YCO.0b013e3282fad375

    Article  PubMed  Google Scholar 

  • Kim MS, Jeong EG, Yoo NJ, Lee SH (2008) Mutational analysis of oncogenic AKT E17K mutation in common solid cancers and acute leukaemias. Br J Cancer 98(9):1533–1535. doi:10.1038/sj.bjc.6604212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim JY, Duan X, Liu CY, Jang M-H, Guo JU, Pow-anpongkul N, Kang E, Song H, Ming G-l (2009) DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron 63(6):761–773. doi:10.1016/j.neuron.2009.08.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kitamura T, Asai N, Enomoto A, Maeda K, Kato T, Ishida M, Jiang P, Watanabe T, Usukura J, Kondo T, Costantini F, Murohara T, Takahashi M (2008) Regulation of VeGF-mediated angiogenesis by the Akt/PKB substrate girdin. Nat Cell Biol 10(3):329–U362. doi:10.1038/ncb1695

    Article  CAS  PubMed  Google Scholar 

  • Kitamura T, Saitoh Y, Takashima N, Murayama A, Niibori Y, Ageta H, Sekiguchi M, Sugiyama H, Inokuchi K (2009) Adult neurogenesis modulates the hippocampus-dependent period of associative fear memory. Cell 139(4):814–827

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, My H, Silhavy JL, Kim S, Dixon-Salazar T, Heiberg A, Scott E, Bafna V, Hill KJ, Collazo A, Funari V, Russ C, Gabriel SB, Mathern GW, Gleeson JG (2012) De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet 44(8):941–945. doi:10.1038/ng.2329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Le-Niculescu H, Niesman I, Fischer T, DeVries L, Farquhar MG (2005) Identification and characterization of GIV, a novel Gα(i/s)-interacting protein found on COPI, endoplasmic reticulum-golgi transport vesicles. J Biol Chem 280(23):22012–22020. doi:10.1074/jbc.M501833200

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Yang J, Yu Q, Wu H, Liu B, Xiong H, Hu G, Zhao J, Yuan X, Liao Z (2013) Associations between single-nucleotide polymorphisms in the PI3K-PTEN-AKT-mTOR pathway and increased risk of brain metastasis in patients with non-small cell lung cancer. Clin Cancer Res 19(22):6252–6260. doi:10.1158/1078-0432.ccr-13-1093

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Ear J, Pavlova Y, Mittal Y, Kufareva I, Ghassemian M, Abagyan R, Garcia-Marcos M, Ghosh P (2011) Tyrosine phosphorylation of the Gα-interacting protein GIV promotes activation of phosphoinositide 3-kinase during cell migration. Sci Signal 4(192):ra64. doi:10.1126/scisignal.2002049

  • Ling Y, Jiang P, Cui S-P, Ren Y-L, Zhu S-N, Yang J-P, Du J, Zhang Y, Liu J-Y, Zhang B (2011) Clinical implications for girdin protein expression in breast cancer. Cancer Invest 29(6):405–410. doi:10.3109/07357907.2011.568568

    Article  PubMed  Google Scholar 

  • Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8(8):627–644. doi:10.1038/nrd2926

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu C, Zhang Y, Xu H, Zhang R, Li H, Lu P, Jin F (2012) Girdin protein: a new potential distant metastasis predictor of breast cancer. Med Oncol 29(3):1554–1560. doi:10.1007/s12032-011-0087-6

    Article  CAS  PubMed  Google Scholar 

  • Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274. doi:10.1016/j.cell.2007.06.009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsushita E, Asai N, Enomoto A, Kawamoto Y, Kato T, Mii S, Maeda K, Shibata R, Hattori S, Hagikura M (2011) Protective role of Gipie, a Girdin family protein, in endoplasmic reticulum stress responses in endothelial cells. Mol Biol Cell 22(6):736–747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyachi H, Mii S, Enomoto A, Murakumo Y, Kato T, Asai N, Komori K, Takahashi M (2014) Role of Girdin in intimal hyperplasia in vein grafts and efficacy of atelocollagen-mediated application of small interfering RNA for vein graft failure. J Vasc Surg 60(2):479–489e5

    Google Scholar 

  • Miyake H, Maeda K, Asai N, Shibata R, Ichimiya H, Isotani-Sakakibara M, Yamamura Y, Kato K, Enomoto A, Takahashi M, Murohara T (2011) The actin-binding protein Girdin and its Akt-mediated phosphorylation regulate neointima formation after vascular injury. Circ Res 108(10):1170–1179. doi:10.1161/circresaha.110.236174

    Article  CAS  PubMed  Google Scholar 

  • Natsume A, Kato T, Kinjo S, Enomoto A, Toda H, Shimato S, Ohka F, Motomura K, Kondo Y, Miyata T, Takahashi M, Wakabayashi T (2012) Girdin maintains the stemness of glioblastoma stem cells. Oncogene 31(22):2715–2724. doi:10.1038/onc.2011.466

    Article  CAS  PubMed  Google Scholar 

  • Nakai T, Nagai T, Tanaka M, Itoh N, Asai N, Enomoto A, Asai M, Yamada S, Saifullah AB, Sokabe M, Takahashi M, Yamada K (2014) Girdin phosphorylation is crucial for synaptic plasticity and memory: a potential role in the interaction of BDNF/TrkB/Akt signaling with NMDA receptor. J Neurosci 34(45):14995–15008. doi:110.1523/JNEUROSCI.2228-14.201

    Google Scholar 

  • Nishimae K, Tsunoda N, Yokoyama Y, Kokuryo T, Iwakoshi A, Takahashi M, Nagino M (2013) The impact of Girdin expression on recurrence-free survival in patients with luminal-type breast cancer. Breast Cancer:1–7. doi:10.1007/s12282-013-0501-3

  • Ohara K, Enomoto A, Kato T, Hashimoto T, Isotani-Sakakibara M, Asai N, Ishida-Takagishi M, Weng L, Nakayama M, Watanabe T (2012) Involvement of Girdin in the determination of cell polarity during cell migration. PLoS One 7(5):e36681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olayioye MA, Neve RM, Lane HA, Hynes NE (2000) The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 19(13):3159–3167. doi:10.1093/emboj/19.13.3159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Omori K, Asai M, Kuga D, Ushida K, Izuchi T, Mii S, Enomoto A, Asai N, Nagino M, Takahashi M (2015) Girdin is phosphorylated on tyrosine 1798 when associated with structures required for migration. Biochem Biophys Res Commun 458(4):934–940. doi:10.1016/j.bbrc.2015.02.065

  • Oshita A, Kishida S, Kobayashi H, Michiue T, Asahara T, Asashima M, Kikuchi A (2003) Identification and characterization of a novel Dvl-binding protein that suppresses Wnt signalling pathway. Genes Cells 8(12):1005–1017. doi:10.1046/j.1365-2443.2003.00692.x

    Article  CAS  PubMed  Google Scholar 

  • Pal I, Mandal M (2012) PI3K and Akt as molecular targets for cancer therapy: current clinical outcomes. Acta Pharmacol Sin 33(12):1441–1458. doi:10.1038/aps.2012.72

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pao W, Girard N (2011) New driver mutations in non-small-cell lung cancer. Lancet Oncol 12(2):175–180. doi:10.1016/s1470-2045(10)70087-5

    Article  CAS  PubMed  Google Scholar 

  • Peineau S, Bradley C, Taghibiglou C, Doherty A, Bortolotto ZA, Wang YT, Collingridge GL (2008) The role of GSK-3 in synaptic plasticity. Br J Pharmacol 153:S428–S437. doi:10.1038/bjp.2008.2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poduri A, Evrony GD, Cai X, Elhosary PC, Beroukhinn R, Lehtinen MK, Hills LB, Heinzen EL, Hill A, Hil RS, Barry BJ, Bourgeois BFD, Riviello JJ, Barkovich AJ, Black PM, Ligon KL, Walsh CA (2012) Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 74(1):41–48. doi:10.1016/j.neuron.2012.03.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Porteous D, Millar K (2009) How DISC1 regulates postnatal brain development: Girdin gets in on the AKT. Neuron 63(6):711–713. doi:10.1016/j.neuron.2009.09.017

    Article  CAS  PubMed  Google Scholar 

  • Potter CJ, Pedraza LG, Xu T (2002) Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 4(9):658–665. doi:10.1038/ncb840

    Article  CAS  PubMed  Google Scholar 

  • Rickle A, Bogdanovic N, Volkman I, Winblad B, Ravid R, Cowburn RF (2004) Akt activity in Alzheimer’s disease and other neurodegenerative disorders. Neuroreport 15(6):955–959. doi:10.1097/00001756-200404290-00005

    Article  CAS  PubMed  Google Scholar 

  • Riviere J-B, Mirzaa GM, O’Roak BJ, Beddaoui M, Alcantara D, Conway RL, St.-Onge J, Schwartzentruber JA, Gripp KW, Nikkel SM, Worthylake T, Sullivan CT, Ward TR, Butler HE, Kramer NA, Albrecht B, Armour CM, Armstrong L, Caluseriu O, Cytrynbaum C, Drolet BA, Innes AM, Lauzon JL, Lin AE, Mancini GMS, Meschino WS, Reggin JD, Saggar AK, Lerman-Sagie T, Uyanik G, Weksberg R, Zirn B, Beaulieu CL, Majewski J, Bulman DE, O’Driscoll M, Shendure J, Graham JM Jr, Boycott KM, Dobyns WB, Finding of Rare Disease Genes (FORGE) Canada Consortium (2012) De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet 44(8):934–940. doi:10.1038/ng.2331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwab SG, Hoefgen B, Hanses C, Hassenbach MB, Albus M, Lerer B, Trixler M, Maier W, Wildenauer DB (2005) Further evidence for association of variants in the AKT1 gene with schizophrenia in a sample of European sib-pair families. Biol Psychiatry 58(6):446–450. doi:10.1016/j.biopsych.2005.05.005

    Article  CAS  PubMed  Google Scholar 

  • Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, Cantley LC (2004) The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6(1):91–99

    Article  CAS  PubMed  Google Scholar 

  • Shibata T, Matsuo Y, Shamoto T, Hirokawa T, Tsuboi K, Takahashi H, Ishiguro H, Kimura M, Takeyama H, Inagaki H (2013) Girdin, a regulator of cell motility, is a potential prognostic marker for esophageal squamous cell carcinoma. Oncol Rep 29(6):2127–2132. doi:10.3892/or.2013.2406

    CAS  PubMed  Google Scholar 

  • Shimobayashi M, Hall MN (2014) Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 15(3):155–162. doi:10.1038/nrm3757

    Article  CAS  PubMed  Google Scholar 

  • Shoji K, Oda K, Nakagawa S, Hosokawa S, Nagae G, Uehara Y, Sone K, Miyamoto Y, Hiraike H, Hiraike-Wada O, Nei T, Kawana K, Kuramoto H, Aburatani H, Yano T, Taketani Y (2009) The oncogenic mutation in the pleckstrin homology domain of AKT1 in endometrial carcinomas. Br J Cancer 101(1):145–148. doi:10.1038/sj.bjc.6605109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simpson F, Martin S, Evans TM, Kerr M, James DE, Parton RG, Teasdale RD, Wicking C (2005) A novel hook-related protein family and the characterization of hook-related protein 1. Traffic 6(6):442–458. doi:10.1111/j.1600-0854.2005.00289.x

    Article  CAS  PubMed  Google Scholar 

  • Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, Carey M, Hu Z, Guan Y, Sahin A, Symmans WF, Pusztai L, Nolden LK, Horlings H, Berns K, Hung MC, van de Vijver MJ, Valero V, Gray JW, Bernards R, Mills GB, Hennessy BT (2008) Integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 68(15):6084–6091. doi:10.1158/0008-5472.can-07-6854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tan K, Kimber WA, Luan J, Soos MA, Semple RK, Wareham NJ, O’Rahilly S, Barroso I (2007) Analysis of genetic variation in Akt2/PKB-β in severe insulin resistance, lipodystrophy, type 2 diabetes, and related metabolic phenotypes. Diabetes 56(3):714–719. doi:10.2337/db06-0921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase-AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501. doi:10.1038/mrc839

    Article  CAS  PubMed  Google Scholar 

  • Wada A (2009) Lithium and neuropsychiatric therapeutics: neuroplasticity via glycogen synthase kinase-3β, β-catenin, and neurotrophin cascades. J Pharmacol Sci 110(1):14–28. doi:10.1254/jphs.09R02CR

    Article  CAS  PubMed  Google Scholar 

  • Wang L-E, Ma H, Hale KS, Yin M, Meyer LA, Liu H, Li J, Lu KH, Hennessy BT, Li X, Spitz MR, Wei Q, Mills GB (2012) Roles of genetic variants in the PI3K and RAS/RAF pathways in susceptibility to endometrial cancer and clinical outcomes. J Cancer Res Clin Oncol 138(3):377–385. doi:10.1007/s00432-011-1103-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe S, Umehara H, Murayama K, Okabe M, Kimura T, Nakano T (2006) Activation of Akt signaling is sufficient to maintain pluripotency in mouse and primate embryonic stem cells. Oncogene 25(19):2697–2707. doi:10.1038/sj.onc.1209307

    Article  CAS  PubMed  Google Scholar 

  • Weng L, Enomoto A, Ishida-Takagishi M, Asai N, Takahashi M (2010) Girding for migratory cues: roles of the Akt substrate Girdin in cancer progression and angiogenesis. Cancer Sci 101(4):836–842. doi:10.1111/j.1349-7006.2010.01487.x

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Fu L, Gu F, Ma Y-j (2012) Expression and significance of phosphorylated Girdin in breast cancer. Zhonghua Zhong Liu Za Zhi (Chin J Oncol) 34(3):205–209. doi:10.3760/cma.j.issn. 0253-3766.2012.03.010

    CAS  Google Scholar 

  • Yamamura Y, Asai N, Enomoto A, Kato T, Mii S, Kondo Y, Ushida K, Niimi K, Tsunoda N, Nagino M, Ichihara S, Furukawa K, Maeda K, Murohara T, Takahashi M (2015) Akt-girdin signaling in cancer-associated fibroblasts contributes to tumor progression. Cancer Res 75(5):813–823. doi:10.1158/0008-5472.CAN-14-1317

  • Yoshimura T, Kawano Y, Arimura N, Kawabata S, Kikuchi A, Kaibuchi K (2005) GSK-3β regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 120(1):137–149. doi:10.1016/j.cell.2004.11.012

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Gu F, She C, Guo H, Li W, Niu R, Fu L, Zhang N, Ma Y (2009) Reduction of Akt2 inhibits migration and invasion of glioma cells. Int J Cancer 125(3):585–595. doi:10.1002/ijc.24314

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Wang H, Zeng Z, Lin J, Little PJ, Srivastava LK, Quirion R (2012) The possible role of the Akt signaling pathway in schizophrenia. Brain Res 1470:145–158

    Article  CAS  PubMed  Google Scholar 

  • Zhuang G, Yu K, Jiang Z, Chung A, Yao J, Ha C, Toy K, Soriano R, Haley B, Blackwood E (2013) Phosphoproteomic analysis implicates the mTORC2-FoxO1 Axis in VEGF signaling and feedback activation of receptor tyrosine kinases. Sci Signal 6(271):ra25

    Google Scholar 

Download references

Acknowledgments

The authors are supported by Grant-in-Aid for Scientific Research on Innovative Areas (22117005) (M.T.) and Grant-in-Aid for Young Scientists (20432255) (A.E.) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahide Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Enomoto, A., Weng, L., Takahashi, M. (2015). Critical Roles of the AKT Substrate Girdin in Disease Initiation and Progression. In: Inoue, Ji., Takekawa, M. (eds) Protein Modifications in Pathogenic Dysregulation of Signaling. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55561-2_15

Download citation

Publish with us

Policies and ethics