Skip to main content

Metastability of Supersaturated Solution and Nucleation

  • Chapter
Advances in Organic Crystal Chemistry

Abstract

A certain time may elapse for the occurrence of a first nucleation after a solution is made supersaturated. Thus, the supersaturated solution looks as if it could be in a metastable state though in a limited time. Such metastability of a supersaturated solution has been evaluated (rather technically) by the magnitude of the metastable zone width (MSZW), i.e., the supercooling at which a first nucleation event is detected when supersaturation is increased by cooling, or the induction time, i.e., the time elapsed until a first nucleation event is detected at a constant temperature. The larger these values are, the higher the metastability is. Surprisingly, however, these two nucleation-related quantities are not clearly understood. There is still much confusion. This chapter provides an overview of recent understandings of the MSZW and induction time with focus on the problems of (1) stochastic and deterministic aspects, (2) time-dependent change of solution structure, (3) role of nucleation, and (4) relevance to the operation of an industrial batch crystallizer.

An erratum to this chapter is available at http://dx.doi.org/10.1007/978-4-431-55555-1_36

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-4-431-55555-1_36

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.W. Mullin, Crystallization, 4th edn. (Butterworth-Heinemann, Oxford, 2001)

    Google Scholar 

  2. W. Ostwald, Studien über die Bildung und Umwandlung fester Körper. Z. Phys. Chem. 22, 289–330 (1987)

    Google Scholar 

  3. H. Griffiths, Mechanical crystallization. J. Soc. Chem. Ind. 44, 7T–18T (1925)

    Article  Google Scholar 

  4. S.S. Kadam, H.J.M. Kramer, J.H. ter Hoost, Combination of a single primary nucleation event and secondary nucleation in crystallization processes. Cryst. Growth Des. 11, 1271–1277 (2011)

    Article  CAS  Google Scholar 

  5. T.P. Melia, W.P. Moffitt, Crystallization from aqueous solution. J. Colloid Sci. 19, 433–447 (1964)

    Article  CAS  Google Scholar 

  6. N. Kubota, T. Kawakami, T. Tadaki, Calculation of supercooling temperature for primary nucleation of potassium nitrate from aqueous solution by the two-kind active site model. J. Cryst. Growth 74, 259–274 (1986)

    Article  CAS  Google Scholar 

  7. L. Goh, K. Chen, V. Bhamidi, G. He, N.C.S. Kee, P.J.A. Kenis, C.F.Z. III, R.D. Braatz, A stochastic model for nucleation kinetics determination in droplet-based microfluidic systems. Cryst. Growth Des. 10, 2515–2521 (2010)

    Article  CAS  Google Scholar 

  8. D. Knezic, J. Zaccaro, A.S. Myerson, Nucleation induction time in levitated droplets. J. Phys. Chem. B 108, 10672–10677 (2004)

    Article  CAS  Google Scholar 

  9. J. Liu, Å.C. Rasmuson, Influence of agitation and fluid shear on primary nucleation in solution. Cryst. Growth Des. 13, 4385–4394 (2013)

    Article  CAS  Google Scholar 

  10. S. Teychene, B. Biscans, Crystal nucleation in a droplet based microfluidic crystallizer. Chem. Eng. Sci. 77, 242–248 (2012)

    Article  CAS  Google Scholar 

  11. S.A. Kulkami, S.S. Kadam, H. Meekes, A.I. Stankiewicz, J.H. ter Horst, Crystal Nucleation kinetics from induction times and metastable zone widths. Cryst. Growth Des. 13, 2435–2440 (2013)

    Article  Google Scholar 

  12. P. Barrett, B. Glennon, Characterizing the metastable zone width and solubility curve using Lasentec FBRM and PVM. Trans. IChem. 80A, 799–805 (2002)

    Article  Google Scholar 

  13. D. O’Grady, M. Barrett, E. Casey, B. Glennon, The effect of mixing on the metastable zone width and nucleation kinetics in the anti-solvent crystallization of benzoic acid. Chem. Eng. Res Des 85, 945–952 (2007)

    Article  Google Scholar 

  14. L.L. Simon, Z.K. Nagy, K. Hugerbuhler, Comparison of external bulk video imaging with focused beam reflectance measurement and ultra-violet visible spectroscopy for metastable zone identification in food and pharmaceutical crystallization processes. Chem. Eng. Sci. 64, 3344–3351 (2009)

    Article  CAS  Google Scholar 

  15. A.R. Parsons, S.N. Black, R. Colling, Automated measurement of metastable zones for pharmaceutical compounds. Trans. IChemE. 81, 700–704 (2003)

    Article  CAS  Google Scholar 

  16. C.J. Brown, Y.C. Lee, Z.K. Nagy, X. Ni, Evaluation of crystallization kinetics of adipic acid in an oscillatory baffled crystallizer. CrystEngComm 16, 8008–8014 (2014)

    Article  CAS  Google Scholar 

  17. J.W. Mullin, S.J. Jančić, Interpretation of metastable zone widths. Trans. IChemE. 57, 188–193 (1979)

    CAS  Google Scholar 

  18. N. Lyczko, F. Espitalie, O. Louisnard, J. Schwartzentruber, Effect of ultrasound on the induction time and the metastable zone widths of potassium sulphate. Chem. Eng. J. 86, 233–241 (2002)

    Article  CAS  Google Scholar 

  19. N. Kubota, Y. Fujisawa, Effects of filtration and thermal history on primary nucleation of potassium bromate from aqueous solution, in Proceedings of the 9th symposium on industrial crystallization (1984), pp. 259–262

    Google Scholar 

  20. S.S. Kadam, S.A. Kulkarni, R.C. Ribera, A.I. Staniewicz, J.H. ter Horst, A new view on the metastable zone width during cooling crystallization. Chem. Eng. Sci. 72, 10–19 (2012)

    Article  CAS  Google Scholar 

  21. Y. Harano, K. Nakano, M. Saito, T. Imoto, Nucleation rate of potassium chlorate from quiescent supersaturated aqueous solution. J. Chem. Eng. Jpn. 9, 373–377 (1976)

    Article  CAS  Google Scholar 

  22. D. Kashchiev, D. Verdoes, G.M. van Rosmalen, Induction time and metastability limit in new phase formation. J. Cryst. Growth 110, 373–380 (1991)

    Article  Google Scholar 

  23. J. Garside, A. Mersmann, J. Nývlt (eds.), Measurement of Crystal Growth and Nucleation Rates. IChemE (Institution of Chemical Engineers, Rugby), pp. 157–158 (2002)

    Google Scholar 

  24. K. Igarashi, M. Azuma, J. Kato, H. Ooshima, The initial stage of crystallization of lysozyme: a differential scanning calorimetric (DSC) study. J. Cryst. Growth 204, 191–200 (1999)

    Article  CAS  Google Scholar 

  25. A. Saito, K. Igarashi, M. Azuma, H. Ooshima, Aggregation of p-acetanisidide molecules in the under-and super-saturated solution and its effect on crystallization. J. Chm. Eng. Jpn. 35, 1133–1139 (2002)

    Article  CAS  Google Scholar 

  26. O. Söhnel, J.W. Mullin, Interpretation of crystallization induction periods. J. Colloid Interface Sci. 123, 43–50 (1988)

    Article  Google Scholar 

  27. S. Srisa-nga, A.W. Flood, E.T. White, The secondary nucleation threshold and crystal growth of α-glucose monohydrate in aqueous solution. Cryst. Growth Des. 3, 795–801 (2006)

    Article  Google Scholar 

  28. L. Wantha, A.W. Flood, Crystal growth rates and secondary nucleation threshold for γ-DL-methionine in aqueous solution. J. Cryst. Growth 318, 117–121 (2011)

    Article  CAS  Google Scholar 

  29. T.L. Threlfall, R.W. De’Ath, S.J. Coles, Metastable zone widths, conformational multiplicity, and seeding. Org. Process Res. Dev. 17, 578–584 (2013)

    Article  CAS  Google Scholar 

  30. A.H. Janse, E.J. de Jong, On the width of the metastable zone. Trans. Inst. Chem. Eng. 56, 187–193 (1978)

    CAS  Google Scholar 

  31. O. Söhnel, J.W. Mullin, The role of time in metastable zone width determination. Chem. Eng. Res. Des. 66, 537–540 (1988)

    Google Scholar 

  32. N. Kubota, A unified interpretation of metastable zone widths and induction times measured for seeded solutions. J. Cryst. Growth 312, 548–554 (2010)

    Article  CAS  Google Scholar 

  33. F.L. Nordström, M. Svard, B. Malmberg, A.C. Rasmuson, Influence of solution thermal and structural history on the nucleation of m-hydroxybenzoic acid polymorphs. Cryst. Growth Des. 12, 4340–4348 (2012)

    Article  Google Scholar 

  34. K. Hussain, G. Thorsen, D. Malthe- Sorenssen, Nucleation and metastability in crystallization of vanillin and ethyl vanillin. Chem. Eng. Sci. 56, 2295–2304 (2001)

    Article  CAS  Google Scholar 

  35. T. Matsui, Y. Harano, Effect of agitation on nucleation of KBrO3 from unseeded aqueous solution. Kagaku Kogaku Ronbunshu 11, 198–202 (1985)

    Article  CAS  Google Scholar 

  36. K. Liang, G. White, D. Wilkinson, L.J. Ford, K.J. Roberts, W.M.L. Wood, Examination of the process scale dependence of L-glutamic acid batch crystallized from supersaturated aqueous solutions in relation to reactor hydrodynamics. Ind. Eng. Chem. Res. 43, 1227–1234 (2004)

    Article  CAS  Google Scholar 

  37. M. Akrap, N. Kuzmanic, J. Prlic-Kardum, Effect of mixing on the crystal size distribution of borax decahydrate in a batch cooling crystallizer. J. Cryst. Growth 312, 3603–3608 (2010)

    Article  CAS  Google Scholar 

  38. M.S. Joshi, A.V. Antony, Nucleation in supersaturated potassium dihydrogen orthophosphate solutions. J. Cryst. Growth 6, 7–9 (1979)

    Article  Google Scholar 

  39. J.W. Mullin, S. Zacek, The precipitation of potassium aluminum sulphate from aqueous solution. J. Cryst. Growth 53, 515–518 (1981)

    Article  CAS  Google Scholar 

  40. J. Mydlarz, A.G. Jones, Crystallization and agglomeration kinetics during the batch drowning-out precipitation of potash alum with aqueous acetone. Powder Technol. 65, 187–194 (1991)

    Article  CAS  Google Scholar 

  41. P.A. Barata, M.L. Serrano, Salting-out precipitation of potassium dihydrogen phosphate (KDP) II. Influence of agitation intensity. J. Cryst. Growth 163, 426–433 (1996)

    Article  CAS  Google Scholar 

  42. S. Veintemillas-Verdaguer, S.O. Esteban, M.A. Herrero, The effect of stirring on sodium chlorate crystallization under symmetry breaking conditions. J. Cryst. Growth 303, 562–567 (2007)

    Article  CAS  Google Scholar 

  43. S. Machefer, K. Schnitzlein, Experimental study on the effect of polyol admixtures on the interfacial tension of potassium dihydrogen phosphate in aqueous solutions: induction time experiments versus drop shape analysis. Ind. Eng. Chem. Res. 48, 2659–2670 (2009)

    Article  CAS  Google Scholar 

  44. N.A. Mitchell, P.J. Frawley, C.T. Ó’Ciardhá, Nucleation kinetics of paracetamol–ethanol solutions from induction time experiments using Lasentec FBRM. J. Cryst. Growth 321, 91–99 (2011)

    Article  CAS  Google Scholar 

  45. J. Nývlt, Kinetics of nucleation in solutions. J. Cryst. Growth 3/4, 377–383 (1968)

    Article  Google Scholar 

  46. K. Sangwal, A novel self-consistent Nývlt-like equation for metastable zone width determined by the polythermal method. Cryst. Res. Technol. 44, 231–247 (2009)

    Article  CAS  Google Scholar 

  47. K. Sangwal, Novel approach to analyze metastable zone width determined by the polythermal method: physical interpretation of various parameters. Cryst. Growth Des. 9, 942–950 (2009)

    Article  CAS  Google Scholar 

  48. D. Kashchiev, A. Borissova, R.B. Hammond, K.J. Roberts, Effect of cooling rate on the critical undercooling for crystallization. J. Cryst. Growth 312, 698–704 (2010)

    Article  CAS  Google Scholar 

  49. D. Kashchiev, G.M. van Rosmalen, Review: nucleation in solutions revisited. Cryst. Res. Technol. 38, 555–574 (2003)

    Article  CAS  Google Scholar 

  50. Y. Harano, K. Oota, Measurement of crystallization of potassium bromate from its quiescent aqueous solution by differential scanning calorimeter – homogeneous nucleation rate. J. Chem. Eng. Jpn. 11, 159–161 (1978)

    Article  CAS  Google Scholar 

  51. Y. Harano, H. Yamamoto, T. Miura, Non-isothermal analysis of nucleation of KBrO3. J. Chem. Eng. Jpn. 14, 439–444 (1981)

    Article  CAS  Google Scholar 

  52. N. Kubota, A new interpretation of metastable zone widths measured for unseeded solutions. J. Cryst. Growth 310, 629–634 (2008)

    Article  CAS  Google Scholar 

  53. N. Kubota, Effect of sample volume on metastable zone width and induction time. J. Cryst. Growth 345, 27–33 (2011)

    Article  Google Scholar 

  54. N. Kubota, M. Kobari, I. Hirasawa, Analytical and numerical study of detector sensitivity and resolution effects on metastable zone width. CrystEngComm 15, 2091–2098 (2013)

    Article  CAS  Google Scholar 

  55. N. Kubota, M. Kobari, I. Hirasawa, Effects of detector sensitivity and resolution on induction time reading. CrystEngComm 16, 1103–1112 (2014)

    Article  CAS  Google Scholar 

  56. M. Kobari, N. Kubota, I. Hirasawa, Computer simulation of metastable zone width for unseeded potassium sulfate aqueous solution. J. Cryst. Growth 317, 64–69 (2011)

    Article  CAS  Google Scholar 

  57. M. Kobari, N. Kubota, I. Hirasawa, Secondary nucleation-mediated effects of stirrer speed and growth rate on induction time for unseeded solution. CrystEngComm 14, 5255–5261 (2012)

    Article  CAS  Google Scholar 

  58. M. Kobari, N. Kubota, I. Hirasawa, Deducing primary nucleation parameters from metastable zone width and induction time data determined with simulation. CrystEngComm 15, 1199–1209 (2013)

    Article  CAS  Google Scholar 

  59. N. Kubota, Y. Fujisawa, T. Tadaki, Effect of volume on the supercooling temperature for primary nucleation of potassium nitrate from aqueous solution. J. Cryst. Growth 89, 545–552 (1988)

    Article  CAS  Google Scholar 

  60. J. Garside, R. Davey, Invited review secondary contact nucleation: kinetics, growth and scale-up. Chem. Eng. Commun. 4, 393–3424 (1980)

    Article  CAS  Google Scholar 

  61. M. Fujiwara, Z.K. Nagy, J.W. Chew, R.D. Braatz, First-principles and direct design approaches for the control of pharmaceutical crystallization. J. Process Control 15, 493–504 (2005)

    Article  CAS  Google Scholar 

  62. C.J. Price, Take some solid steps to improve crystallization. Chem. Eng. Prog. 93, 34–43 (1997)

    CAS  Google Scholar 

  63. J.W. Mullin, J. Nývlt, Programmed cooling of batch crystallizers. Chem. Eng. Sci. 26, 369–377 (1971)

    Article  CAS  Google Scholar 

  64. Z.Q. Yu, P.S. Chow, R.B.H. Tan, Application of attenuated total reflectance-Fourier transform infrared (ATR-FTIR) technique in the monitoring and control of anti-solvent crystallization. Ind. Eng. Chem. Res. 45, 438–444 (2006)

    Article  CAS  Google Scholar 

  65. N. Doki, N. Kubota, A. Sato, M. Yokota, O. Hamada, F. Masumi, Scaleup experiments on seeded batch cooling crystallization of potassium alum. AIChE J. 45, 2527–2533 (1999)

    Article  CAS  Google Scholar 

  66. N. Doki, N. Kubota, A. Sato, M. Yokota, Effect of cooling mode on product crystal size in seeded batch crystallization of potassium alum. Chem. Eng. J. 81, 313–316 (2001)

    Article  CAS  Google Scholar 

  67. N. Kubota, N. Doki, M. Yokota, D. Jagadesh, Seeding effect on product crystal size in batch crystallization. J. Chem. Eng. Jpn. 35, 1063–1071 (2002)

    Article  CAS  Google Scholar 

  68. N. Kubota, N. Doki, M. Yokota, A. Sato, Seeding policy in batch cooling crystallization. Powder Technology 121, 31–38 (2001)

    Article  CAS  Google Scholar 

  69. N. Kubota, M. Onosawa, Seeded batch crystallization of ammonium aluminum sulfate from aqueous solution. J. Cryst. Growth 311, 4525–4529 (2009)

    Article  CAS  Google Scholar 

  70. Z.K. Nagy, G. Févotte, H. Kramer, L.L. Simon, Recent advances in the monitoring, modelling and control of crystallization systems. Chem. Eng. Res. Des. 91, 1903–1922 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriaki Kubota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kubota, N., Kobari, M., Hirasawa, I. (2015). Metastability of Supersaturated Solution and Nucleation. In: Tamura, R., Miyata, M. (eds) Advances in Organic Crystal Chemistry. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55555-1_7

Download citation

Publish with us

Policies and ethics