Skip to main content

Crystal Engineering Approach Toward Molecule-Based Magnetic Materials

  • Chapter
Advances in Organic Crystal Chemistry

Abstract

The crystal engineering approach toward molecule-based magnetic materials by controlling the molecular arrangement of the stable radical based on the directionality of the hydrogen bonding is described in connection with the magnetic and orbital interactions between the radical units. Several derivatives of 4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-1-oxyl-3-oxide (NN) carrying a heterocycle having an NH proton donor site at the 2-position were designed. The imidazole derivative, Im-NN, formed a hydrogen-bonded chain, and close contact between the NO bonds of the NN group were observed between the chains. The benzimidazole and naphthoimidazole derivatives, BIm-NN and NIm-NN, formed a 1D assembled structure induced by intra- and intermolecular hydrogen bonds. Magnetic measurements revealed that a strong ferromagnetic interaction existed in BIm-NN, while dimeric and 1D chained antiferromagnetic interactions were observed in Im-NN and NIm-NN, respectively. The magneto-structural correlation of the 4- and 5-azaindole derivatives (4NIn-NN, 5NIn-NN) is also descried. In these crystals, the hydrogen bonds and π-stacking have an important role in the crystal scaffolding, and the occurrence of a magnetic interaction is explained by contact of the SOMOs. These results indicate that the NHCC(NO)NO moiety is a useful synthon for propagating intermolecular magnetic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. For selected books: (a) O. Kahn, Molecular Magnetism (VCH, New York, 1993); (b) P.M. Lahti, Magnetic Properties of Organic Materials (Marcel-Dekker, New York, 1999); (c) K. Itoh, M. Kinoshita, Molecular Magnetism New Magnetic Materials (Kodansha Gordon and Breach Science Publishers, Tokyo, 2000); (d) J.S. Miller, M. Drillon, Magnetism: Molecules to Materials, vol. 1–5 (Wiley, Weinheim, 2001); (e) R. Hicks, Stable Radicals: Fundamental and Applied Aspects of Odd-Electron Compounds (Wiley, New York, 2010)

    Google Scholar 

  2. For selected reviews: (a) J.S. Miller, A.J. Epstein, W.M. Reiff, Chem. Rev. 88, 201 (1988a); (b) J.S. Miller, A.J. Epstein, W.M. Reiff, Acc. Chem. Res. 21, 114 (1988b); (c) H. Iwamura, Adv. Phys. Org. Chem. 26, 179 (1990); (d) D.A. Dougherty, Acc. Chem. Res. 24, 88 (1991); (e) H. Iwamura, N. Koga, Acc. Chem. Res. 26, 346 (1993); (f) J.S. Miller, A.J. Epstein, Angew. Chem. Int. Ed. Engl. 33, 385 (1994); (g) A. Rajca, Chem. Rev. 94, 871 (1994); (h) M. Baumgarten, K. Müllen, Top. Curr. Chem. 169, 1 (1994); (i) J.A. Crayston, J.N. Devine, J.C. Walton, Tetrahedron 56, 7829 (2000); (j) P.M. Lahti, Adv. Phys. Org. Chem. 45, 93–169 (2011); (k) P. Bujak, I. Kulszewicz-Bajer, M. Zagorska, V. Maurel, I. Weilgus, A. Pron, Chem. Soc. Rev. 42, 8895 (2013)

    Google Scholar 

  3. (a) H.C. Longuet-Higgins, J. Phys. Chem. 18, 265 (1950); N. Mataga, Theor. Chim. Acta 10, 372 (1968); (b) W.T. Borden, E.R. Davidson, J. Am. Chem. Soc. 115, 8928 (1977); (c) A.A. Ovchinnikov, Theor. Chim. Acta 47, 297 (1978); (d) K. Itoh, Pure Appl. Chem. 50, 1251 (1978); (e) N. Tyutyulkov, O.E. Polansky, P. Schuster, S. Karabunarliev, C.I. Ivanov, Theor. Chim. Acta 67, 211 (1985)

    Google Scholar 

  4. (a) H.M.J. McConnell, J. Chem. Phys. 1963, 39 (1910); (b) H.M. McConnell, Proc. Robert A. Welch Found Conf. Chem. Res 11, 144 (1967)

    Google Scholar 

  5. B. Bleaney, K.D. Bowers, Proc. R. Soc. Lond Ser. A 214, 451 (1952)

    Article  CAS  Google Scholar 

  6. J.C. Bonner, M.E. Fishier, Phys. Rev. 135, A640 (1964)

    Article  Google Scholar 

  7. G.A. Baker Jr., G.S. Rushbrooke, H.E. Gilbert, Phys. Rev. 135, A1272 (1964)

    Article  Google Scholar 

  8. (a) K. Yamaguchi, H. Fukui, T. Fueno, Chem. Lett. 15, 625 (1986); (b) K. Tanaka, T. Takeuchi, K. Yoshizawa, M. Toriumi, T. Yamabe, Synth. Met. 44, 1 (1991); (c) J.J. Novoa, M. Deumal, Struct. Bond. 100, 33 (2001)

    Google Scholar 

  9. T. Sugawara, H. Tsukada, A. Izuoka, H. Iwamura, J. Am. Chem. Soc. 107, 1786 (1985)

    Article  Google Scholar 

  10. K. Yoshizawa, R. Hoffmann, J. Am. Chem. Soc. 117, 6921 (1995)

    Article  CAS  Google Scholar 

  11. W. Duffy, D.L. Strandburg, J. Chem. Phys. 46, 456 (1967)

    Article  CAS  Google Scholar 

  12. N. Azuma, J. Yamauchi, K. Mukai, H. Ohya-Nishiguchi, Bull. Chem. Soc. Jpn. 46, 2728 (1973)

    Article  CAS  Google Scholar 

  13. (a) K. Mukai, Bull. Chem. Soc. Jpn. 42, 40 (1969); (b) K. Awaga, T. Sugano, M. Kinoshita, Solid State Commun. 57, 453 (1986); (c) K.M. Chi, J.C. Calabrese, J.S. Miller, S.I. Khan, Mol. Cryst. Liq. Cryst. 176, 185 (1989)

    Google Scholar 

  14. C. Veyret, A. Blaise, Mol. Phys. 25, 873 (1973)

    Article  CAS  Google Scholar 

  15. P.M. Allemand, G. Srdanov, F. Wudl, J. Am. Chem. Soc. 112, 9391 (1990)

    Article  CAS  Google Scholar 

  16. M. Kinoshita, Jpn. J. Appl. Phys. 33, 5718 (1994)

    Article  CAS  Google Scholar 

  17. R. Chiarelli, M.A. Novak, A. Rassat, J.L. Tholence, Nature 363, 147 (1993)

    Article  CAS  Google Scholar 

  18. T. Steiner, Angew. Chem. Int. Ed. 41, 48 (2002)

    Article  CAS  Google Scholar 

  19. (a) G.R. Desiraju, Angew. Chem. Int. Ed. Engl. 34, 2311 (1995); (b) B. Moulton, M. Zaworotko, Chem. Rev. 101, 1629 (2001); (c) N. Blagden, R. Davey, J. Cryst. Growth. Des. 3, 873 (2003); (d) G.R. Desiraju, J. Am. Chem. Soc. 135, 9952 (2013)

    Google Scholar 

  20. (a) E.F. Ullman, J.H. Osiechi, D.G.B. Boocock, R. Darcy, J. Am. Chem. Soc. 94, 7049 (1972); (b) A. Caneschi, D. Gatteschi, P. Rey, Prog. Inorg. Chem. 39, 331 (1991)

    Google Scholar 

  21. N. Yoshioka, M. Irisawa, Y. Mochizuki, T. Kato, H. Inoue, S. Ohba, Chem. Lett. 26, 251 (1997)

    Article  Google Scholar 

  22. N. Yoshioka, N. Matsuoka, M. Irisawa, S. Ohba, H. Inoue, Mol. Cryst. Liq. Cryst. 334, 239 (1999)

    Article  CAS  Google Scholar 

  23. H. Nagashima, H. Inoue, N. Yoshioka, J. Phys. Chem. B 108, 6144 (2004)

    Article  CAS  Google Scholar 

  24. R. Taylor, W. Versichel, J. Am. Chem. Soc. 106, 244 (1984)

    Article  CAS  Google Scholar 

  25. (a) K. Yamaguchi, M. Okumura, J. Maki, T. Noro, H. Namimoto, M. Nakano, T. Fueno, K. Nakasuji, Chem. Phys. Lett. 190, 353 (1992); (b) T. Kawakami, S. Takeda, W. Mori, K. Yamaguchi, Chem. Phys. Lett. 261, 129 (1996)

    Google Scholar 

  26. H. Nagashima, M. Irisawa, N. Yoshioka, H. Inoue, Mol. Cryst. Liq. Cryst. 376, 371 (2002)

    Article  CAS  Google Scholar 

  27. H. Nagashima, H. Inoue, N. Yoshioka, Synth. Met. 137, 1257 (2003)

    Article  CAS  Google Scholar 

  28. (a) H. Murata, D. Zeynep, P.M. Lahti, Chem. Mater. 18, 2625 (2006); (b) H. Murata, Y. Miyazaki, A. Inaba, A. Paduan-Filho, V. Bindilatti, N.F. Oliveira Jr., D. Zeynep, P.M. Lahti, J. Am. Chem. Soc. 130, 186 (2008); (c) G. Seber, G.J. Halder, J.A. Schlueter, P.M. Lahti, Cryst. Growth Des. 11, 4261 (2011); (d) G. Seber, R.S. Fretias, J.T. Mague, A. Paduan-Filho, X. Gratens, V. Bindilatti, N.F. Oliveira, N. Yoshioka, P.M. Lahti, J. Am. Chem. Soc. 134, 3825 (2012); (e) S.J. Blundell, J.S. Moller, T. Lancaster, P.J. Baker, L. Pratt, G. Seber, P.M. Lahti, Phys. Rev. B 88, 064423 (2013)

    Google Scholar 

  29. (a) S. Sharmin, S.J. Blundell, T. Sugano, A. Ardavan, Polyhedron 24, 2360 (2005); (b) T. Sugano, S.J. Blundell, T. Lancaster, F.L. Pratt, H. Mori, Phys. Rev. B 82, 180401 (2010)

    Google Scholar 

  30. H. Nagashima, N. Hashimoto, H. Inoue, N. Yoshioka, New J. Chem. 27, 805 (2003)

    Article  CAS  Google Scholar 

  31. H. Nagashima, S. Fujita, H. Inoue, N. Yoshioka, Cryst. Growth Des. 4, 19 (2004)

    Article  CAS  Google Scholar 

  32. J. Catalán, O. Mó, P. Pérez, M. Yáñez, Tetrahedron 39, 2851 (1983)

    Article  Google Scholar 

Download references

Acknowledgments

N.Y. thanks Professor S. Ohba (Keio University) for the collaboration on crystallographic study and Dr. H. Nagashima for his experimental support and productive comments. This work was partly supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Yoshioka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Yoshioka, N. (2015). Crystal Engineering Approach Toward Molecule-Based Magnetic Materials. In: Tamura, R., Miyata, M. (eds) Advances in Organic Crystal Chemistry. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55555-1_34

Download citation

Publish with us

Policies and ethics