Skip to main content

Human Epidermal Growth Factor Receptor (HER) Family Molecular Structure

  • Chapter
  • First Online:
  • 1174 Accesses

Abstract

ERBB receptors and their cognate ligands provide a rich and complex multilayered network of signaling control. Multiple layers of control act to safeguard against unwanted ERBB receptor activation, including the “closed” conformations of ligand-unbound EGFR, ERBB3, and ERBB4, auto-inhibited interactions among “open” conformation extracellular domains (ECDs), a vast repertoire of receptor-specific ligands (with, in some cases, a myriad of isoforms), the potential to form high-order complexes with associated proxy phosphorylation, and receptor-mediated endocytosis with associated recycling and degradation pathways. Despite these extensive safeguards, the deregulation of ERBB receptors is observed in multiple tumor types. In the case of ERBB2, the use of therapeutic antibodies aimed at distinct epitopes within the extracellular domain has resulted in marked improvements in clinical efficacy, and greater understanding of biology of ERBB2 receptor trafficking following receptor-mediated endocytosis has led to important insights in the development of an antibody-drug conjugate targeting this receptor. The multilayered nature of ERBB signaling offers a broad spectrum of future points for consideration of therapeutic interventions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agus DB, Akita RW, Fox WD, Lewis GD, Higgins B, Pisacane PI, Lofgren JA, Tindell C, Evans DP, Maiese K, Scher HI, Sliwkowski MX (2002) Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2(2):127–137

    Article  CAS  PubMed  Google Scholar 

  2. Alvarado D, Klein DE, Lemmon MA (2009) ErbB2/HER2/Neu resembles an autoinhibited invertebrate EGF receptor. Nature 461(7261):287–291. doi:10.1038/nature08297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alvarez RH, Valero V, Hortobagyi GN (2010) Emerging targeted therapies for breast cancer. J Clin Oncol 28:3366–3379

    Article  CAS  PubMed  Google Scholar 

  4. Amin DN, Campbell MR, Moasser MM (2010) The role of HER3, the unpretentious member of the HER family, in cancer biology and cancer therapeutics. Semin Cell Dev Biol 21:944–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Austin CD, De Maziere AM, Pisacane PI, van Dijk SM, Eigenbrot C, Sliwkowski MX et al (2004) Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin. Mol Biol Cell 15(12):5268–5282. PubMed

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barbacci EG, Guarino BC, Stroh JG, Singleton DH, Rosnack KJ, Moyer JD, Andrews GC (1995) The structural basis for the specificity of epidermal growth factor and heregulin binding. J Biol Chem 270:9585

    Article  CAS  PubMed  Google Scholar 

  7. Bargmann CI, Weinberg RA (1988) Increased tyrosine kinase activity associated with the protein encoded by the activated neu oncogene. Proc Natl Acad Sci U S A 85:5394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baselga J, Swain SM (2009) Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer 9:463–475

    Article  CAS  PubMed  Google Scholar 

  9. Brennan PJ, Kumagai T, Berezov A, Murali R, Greene MI (2000) HER2/neu: mechanisms of dimerization/oligomerization. Oncogene 19:6093–6101

    Article  CAS  PubMed  Google Scholar 

  10. Burgess AW, Cho HS, Eigenbrot C, Ferguson KM, Garrett TP, Leahy DJ, Lemmon MA, Sliwkowski MX, Ward CW, Yokoyama S (2003) An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol Cell 12:541–552

    Article  CAS  PubMed  Google Scholar 

  11. Cho HS, Leahy DJ (2002) Structure of the extracellular region of HER3 reveals an interdomain tether. Science 297:1330–1333

    Article  CAS  PubMed  Google Scholar 

  12. Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW Jr et al (2003) Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 421:756–760

    Article  CAS  PubMed  Google Scholar 

  13. Citri A, Skaria KB, Yarden Y (2003) The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Exp Cell Res 284:54–65

    Article  CAS  PubMed  Google Scholar 

  14. Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 6(4):443–446

    Article  CAS  PubMed  Google Scholar 

  15. Dawson JP, Berger MB, Lin CC, Schlessinger J, Lemmon MA, Ferguson KM (2005) Epidermal growth factor receptor dimerization and activation require ligand-induced conformational changes in the dimer interface. Mol Cell Biol 25:7734–7742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Di Fiore PP, Pierce JH, Kraus MH, Segatto O, King CR, Aaronson SA (1987) erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science 237:178

    Article  PubMed  Google Scholar 

  17. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich H, Muzny DM, Morgan MB et al (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455:1069–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Falls DL (2003) Neuregulins: functions, forms, and signaling strategies. Exp Cell Res 284:14

    Article  CAS  PubMed  Google Scholar 

  19. Fendly BM, Winget M, Hudziak RM, Lipari MT, Napier MA, Ullrich A (1990) Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product. Cancer Res 50(5):1550–1558

    CAS  PubMed  Google Scholar 

  20. Ferguson KM, Berger MB, Mendrola JM, Cho H-S, Leahy DJ, Lemmon MA (2003) EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol Cell 11:507–517

    Google Scholar 

  21. Ferguson KM (2008) Structure-based view of epidermal growth factor receptor regulation. Annu Rev Biophys 37:353–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Franklin MC, Carey KD, Vajdos FF, Leahy DJ, de Vos AM, Sliwkowski MX (2004) Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 5(4):317–328

    Article  CAS  PubMed  Google Scholar 

  23. Frykberg L, Palmieri S, Beug H, Graf T, Hayman MJ, Vennstrom B (1983) Transforming capacities of avian erythroblastosis virus mutants deleted in the erbA or erbB oncogenes. Cell 32:227–238

    Article  CAS  PubMed  Google Scholar 

  24. Gala K, Chandarlapaty S (2014) Molecular pathways: HER3 targeted therapy. Clin Cancer Res 20(6):1410–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Garner AP, Bialucha CU, Sprague ER, Garrett JT, Sheng Q, Li S, Sineshchekova O, Saxena P, Sutton CR, Chen D, Chen Y, Wang H, Liang J, Das R, Mosher R, Gu J, Huang A, Haubst N, Zehetmeier C, Haberl M, Elis W, Kunz C, Heidt AB, Herlihy K, Murtie J, Schuller A, Arteaga CL, Sellers WR, Ettenberg SA (2013) An antibody that locks HER3 in the inactive conformation inhibits tumor growth driven by HER2 or neuregulin. Cancer Res 73(19):6024–6035. doi:10.1158/0008-5472.CAN-13-1198. Epub 2013 Aug 8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Garrett TP, McKern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO, Zhu HJ, Walker F, Frenkel MJ, Hoyne PA, Jorissen RN, Nice EC, Burgess AW, Ward CW (2002) Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Cell 110:763

    Article  CAS  PubMed  Google Scholar 

  27. Garrett TP, McKern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO, Kofler M, Jorissen RN, Nice EC, Burgess AW, Ward CW (2003) The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol Cell 11:495

    Article  CAS  PubMed  Google Scholar 

  28. Garrett JT, Sutton CR, Kurupi R, Bialucha CU, Ettenberg SA, Collins SD, Sheng Q, Wallweber J, Defazio-Eli L, Arteaga CL (2013) Combination of antibody that inhibits ligand-independent HER3 dimerization and a p110α inhibitor potently blocks PI3K signaling and growth of HER2+ breast cancers. Cancer Res 73(19):6013–6023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gilmore T, DeClue JE, Martin GS (1985) Protein phosphorylation at tyrosine is induced by the v-erbB gene product in vivo and in vitro. Cell 40:609

    Article  CAS  PubMed  Google Scholar 

  30. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C et al (2007) Patterns of somatic mutation in human cancer genomes. Nature 446:153–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Haglund K, Sigismund S, Polo S, Szymkiewicz I, Di Fiore PP, Dikic I (2003) Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol 5:461

    Article  CAS  PubMed  Google Scholar 

  32. Holbro T, Beerli RR, Maurer F, Koziczak M, Barbas CF III, Hynes NE (2003) The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci U S A 100:8933–8938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Honegger AM, Schmidt A, Ullrich A, Schlessinger J (1990) Evidence for epidermal growth factor (EGF)-induced intermolecular autophosphorylation of the EGF receptors in living cells. Mol Cell Biol 10:4035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5:341–354

    Article  CAS  PubMed  Google Scholar 

  35. Hynes NE, MacDonald G (2009) ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol 21:177–184

    Article  CAS  PubMed  Google Scholar 

  36. Jeong EG, Soung YH, Lee JW, Lee SH, Nam SW, Lee JY, Yoo NJ, Lee SH (2006) ERBB3 kinase domain mutations are rare in lung, breast and colon carcinomas. Int J Cancer 119:2986–2987

    Article  CAS  PubMed  Google Scholar 

  37. Jaiswal BS et al (2013) Oncogenic ERBB3 mutations in human cancers. Cancer Cell 23:603–617

    Article  CAS  PubMed  Google Scholar 

  38. Junttila TT, Akita RW, Parsons K, Fields C, Lewis Phillips GD, Friedman LS, Sampath D, Sliwkowski MX (2009) Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell 15:429–440

    Article  CAS  PubMed  Google Scholar 

  39. Jura N, Shan Y, Cao X, Shaw DE, Kuriyan J (2009) Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3. Proc Natl Acad Sci U S A 106:21608–21613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Komatsu M, Jepson S, Arango ME, Carothers Carraway CA, Carraway KL (2001) Muc4/sialomucin complex, an intramembrane modulator of ErbB2/HER2/Neu, potentiates primary tumor growth and suppresses apoptosis in a xenotransplanted tumor. Oncogene 20(4):461–470

    Article  CAS  PubMed  Google Scholar 

  41. Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM, Yue P, Haverty PM, Bourgon R, Zheng J et al (2010) Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466:869–873

    Article  CAS  PubMed  Google Scholar 

  42. Landgraf R (2007) HER2 (ERBB2): functional diversity from structurally conserved building blocks. Breast Cancer Res 9:202

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lewis Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E et al (2008) Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res 68:9280–9290

    Article  CAS  PubMed  Google Scholar 

  45. Li S, Schmitz KR, Jeffrey PD, Wiltzius JJ, Kussie P, Ferguson KM (2005) Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7(4):301–311. PubMed

    Article  CAS  PubMed  Google Scholar 

  46. Marmor MD, Yarden Y (2004) Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene 23:2057

    Article  CAS  PubMed  Google Scholar 

  47. Mattoon D, Klein P, Lemmon MA, Lax I, Schlessinger J (2004) The tethered configuration of the EGF receptor extracellular domain exerts only a limited control of receptor function. Proc Natl Acad Sci U S A 101(4):923–928. PubMed

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J (2001) Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res 61(12):4744–4749

    CAS  PubMed  Google Scholar 

  49. Ogiso H, Ishitani R, Nureki O, Fukai S, Yamanaka M, Kim JH, Saito K, Sakamoto A, Inoue M, Shirouzu M, Yokoyama S (2002) Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 110:775–787

    Article  CAS  PubMed  Google Scholar 

  50. Paik S, Liu ET (2000) HER2 as a predictor of therapeutic response in breast cancer. Breast Dis 11:91–102

    CAS  PubMed  Google Scholar 

  51. Park E, Baron R, Landgraf R (2008) Higher-order association states of cellular ERBB3 probed with photo-cross-linkable aptamers. Biochemistry 47(46):11992–12005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Penuel E, Akita RW, Sliwkowski MX (2002) Identification of a region within the ErbB2/HER2 intracellular domain that is necessary for ligand-independent association. J Biol Chem 277:28468–28473

    Article  CAS  PubMed  Google Scholar 

  53. Pinkas-Kramarski R, Soussan L, Waterman H, Levkowitz G, Alroy I, Klapper L, Lavi S, Seger R, Ratzkin BJ, Sela M, Yarden Y (1996) Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J 15:2452

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Prickett TD, Agrawal NS, Wei X, Yates KE, Lin JC, Wunderlich JR, Cronin JC, Cruz P, Rosenberg SA, Samuels Y (2009) Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4. Nat Genet 41:1127–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Reynolds AR, Tischer C, Verveer PJ, Rocks O, Bastiaens PI (2003) EGFR activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation. Nat Cell Biol 5:447

    Article  CAS  PubMed  Google Scholar 

  56. Riedel H, Schlessinger J, Ullrich A (1987) A chimeric, ligand-binding v-erbB/EGF receptor retains transforming potential. Science 236:197

    Article  CAS  PubMed  Google Scholar 

  57. Ross JS, Fletcher JA (1998) The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Stem Cells 16(6):413–428

    Article  CAS  PubMed  Google Scholar 

  58. Shi F, Telesco SE, Liu Y, Radhakrishnan R, Lemmon MA (2010) ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze auto-phosphorylation. Proc Natl Acad Sci U S A 107:7692–7697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sigismund S, Woelk T, Puri C, Maspero E, Tacchetti C, Transidico P, Di Fiore PP, Polo S (2005) Clathrin-independent endocytosis of ubiquitinated cargos. Proc Natl Acad Sci USA 102(8):2760–2765

    Google Scholar 

  60. Sithanandam G, Anderson LM (2008) The ERBB3 receptor in cancer and cancer gene therapy. Cancer Gene Ther 15:413–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stove C, Bracke M (2004) Roles for neuregulins in human cancer. Clin Exp Metastasis 21:665

    Article  CAS  PubMed  Google Scholar 

  62. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244(4905):707–712

    Article  CAS  PubMed  Google Scholar 

  63. Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, Kryukov GV, Lawrence MS, Sougnez C, McKenna A et al (2011) The mutational landscape of head and neck squamous cell carcinoma. Science 333:1157–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Supino-Rosin L, Yoshimura A, Yarden Y, Elazar Z, Neumann D (2000) Intracellular retention and degradation of the epidermal growth factor receptor, two distinct processes mediated by benzoquinone ansamycins. J Biol Chem 275(29):21850–21855. PubMed

    Article  CAS  PubMed  Google Scholar 

  65. TCGA Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70

    Article  Google Scholar 

  66. Swain SM, Baselga J, Kim SB, Ro J, Semiglazov V, Campone M, Ciruelos E, Ferrero JM, Schneeweiss A, Heeson S, Clark E, Ross G, Benyunes MC, Cortés J, CLEOPATRA Study Group (2015) Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med 372(8):724–734

    Article  CAS  PubMed  Google Scholar 

  67. Tonks NK, Neel BG (2001) Combinatorial control of the specificity of protein tyrosine phosphatases. Curr Opin Cell Biol 13:182

    Article  CAS  PubMed  Google Scholar 

  68. Tzahar E, Levkowitz G, Karunagaran D, Yi L, Peles E, Lavi S, Chang D, Liu N, Yayon A, Wen D, Yarden Y (1994) ErbB-3 and ErbB-4 function as the respective low and high affinity receptors of all NDF/heregulin isoforms. J Biol Chem 269:25226–25233

    CAS  PubMed  Google Scholar 

  69. Tzahar E, Waterman H, Chen X, Levkowitz G, Karunagaran D, Lavi S, Ratzkin BJ, Yarden Y (1996) A hierarchical network of interreceptor interactions determines signal transduction by neu diferentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol 16(10): 5276–5287

    Google Scholar 

  70. Wang SE, Narasanna A, Perez-Torres M, Xiang B, Wu FY, Yang S, Carpenter G, Gazdar AF, Muthuswamy SK, Arteaga CL (2006) HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. Cancer Cell 10:25–38

    Article  PubMed  Google Scholar 

  71. Warren CM, Landgraf R (2006) Signaling through ERBB receptors: multiple layers of diversity and control. Cell Signal 18:923–933

    Article  CAS  PubMed  Google Scholar 

  72. Waterman H, Sabanai I, Geiger B, Yarden Y (1998) Alternative intracellular routing of ErbB receptors may determine signaling potency. J Biol Chem 273:13819

    Article  CAS  PubMed  Google Scholar 

  73. Yamauchi M, Gotoh N (2009) Theme: oncology–molecular mechanisms determining the efficacy of EGF receptor-specific tyrosine kinase inhibitors help to identify biomarker candidates. Biomark Med 3:139–151

    Article  CAS  PubMed  Google Scholar 

  74. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137

    Article  CAS  PubMed  Google Scholar 

  75. Zhang Q, Park E, Kani K, Landgraf R (2012) Functional isolation of activated and unilaterally phosphorylated heterodimers of ERBB2 and ERBB3 as scaffolds in ligand-dependent signaling. Proc Natl Acad Sci U S A 109(33):13237–13242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Pegram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Pegram, M.D., Landgraf, R. (2016). Human Epidermal Growth Factor Receptor (HER) Family Molecular Structure. In: Toi, M., Winer, E., Benson, J., Klimberg, S. (eds) Personalized Treatment of Breast Cancer. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55552-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55552-0_19

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55551-3

  • Online ISBN: 978-4-431-55552-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics