Skip to main content

Imaging of Tumor Response by Preoperative Systemic Treatment

  • Chapter
  • First Online:
Personalized Treatment of Breast Cancer
  • 1140 Accesses

Abstract

In this chapter, imaging in evaluating treatment response of breast cancer by PST is reviewed. The advantage and disadvantage of imaging modalities including MMG, US, and MRI are compared. The main focus is the role of MRI in evaluating residual tumor and identifying pCR after NAC, since MRI is the most reliable and objective imaging tool. Technical aspect of MR scanner and DCE-MRI protocol is mentioned. RECIST-based measurement is the standard method of evaluation but is of limited value influenced by different morphology and different shrinkage pattern (concentric or dendritic). MR volumetry can be used as a more objective and accurate measurement tool. Variation of tumor response pattern with different therapeutic agents (e.g., taxane containing) may need to be considered in evaluating tumor response. Other emerging MRI techniques include DW-MRI as a non-contrast-enhanced imaging. Finally, FDG-PET is attracting attention as a functional imaging due to its promising results in response prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fisher B, Costantino JP, Wickerham DL, Redmond CK, Kavanah M, Cronin WM, Vogel V, Robidoux A, Dimitrov N, Atkins J, Daly M, Wieand S, Tan-Chiu E, Ford L, Wolmark N (1998) Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 90(18):1371–1388

    Article  CAS  PubMed  Google Scholar 

  2. Wolmark N, Wang J, Mamounas E, Bryant J, Fisher B (2001) Preoperative chemotherapy in patients with operable breast cancer: nine-year results from National Surgical Adjuvant Breast and Bowel Project B-18. J Natl Cancer Inst Monogr 30:96–102

    Article  PubMed  Google Scholar 

  3. Hylton NM, Blume JD, Bernreuter WK, Pisano ED, Rosen MA, Morris EA, Weatherall PT, Lehman CD, Newstead GM, Polin S, Marques HS, Esserman LJ, Schnall MD, Team AT, Investigators IST (2012) Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy – results from ACRIN 6657/I-SPY TRIAL. Radiology 263(3):663–672. doi:10.1148/radiol.12110748

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rastogi P, Anderson SJ, Bear HD, Geyer CE, Kahlenberg MS, Robidoux A, Margolese RG, Hoehn JL, Vogel VG, Dakhil SR, Tamkus D, King KM, Pajon ER, Wright MJ, Robert J, Paik S, Mamounas EP, Wolmark N (2008) Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol 26(5):778–785. doi:10.1200/JCO.2007.15.0235

    Article  PubMed  Google Scholar 

  5. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247. doi:10.1016/j.ejca.2008.10.026

    Article  CAS  PubMed  Google Scholar 

  6. von Minckwitz G, Blohmer JU, Costa SD, Denkert C, Eidtmann H, Eiermann W, Gerber B, Hanusch C, Hilfrich J, Huober J, Jackisch C, Kaufmann M, Kummel S, Paepke S, Schneeweiss A, Untch M, Zahm DM, Mehta K, Loibl S (2013) Response-guided neoadjuvant chemotherapy for breast cancer. J Clin Oncol 31(29):3623–3630. doi:10.1200/JCO.2012.45.0940

    Article  Google Scholar 

  7. Yeh E, Slanetz P, Kopans DB, Rafferty E, Georgian-Smith D, Moy L, Halpern E, Moore R, Kuter I, Taghian A (2005) Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer. AJR Am J Roentgenol 184(3):868–877. doi:10.2214/ajr.184.3.01840868

    Article  PubMed  Google Scholar 

  8. Marinovich ML, Houssami N, Macaskill P, Sardanelli F, Irwig L, Mamounas EP, von Minckwitz G, Brennan ME, Ciatto S (2013) Meta-analysis of magnetic resonance imaging in detecting residual breast cancer after neoadjuvant therapy. J Natl Cancer Inst 105(5):321–333. doi:10.1093/jnci/djs528

    Article  CAS  PubMed  Google Scholar 

  9. Marinovich ML, Macaskill P, Irwig L, Sardanelli F, von Minckwitz G, Mamounas E, Brennan M, Ciatto S, Houssami N (2013) Meta-analysis of agreement between MRI and pathologic breast tumour size after neoadjuvant chemotherapy. Br J Cancer 109(6):1528–1536. doi:10.1038/bjc.2013.473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rosen EL, Eubank WB, Mankoff DA (2007) FDG PET, PET/CT, and breast cancer imaging. Radiographics 27(Suppl 1):S215–S229. doi:10.1148/rg.27si075517

    Article  PubMed  Google Scholar 

  11. Groheux D, Espie M, Giacchetti S, Hindie E (2013) Performance of FDG PET/CT in the clinical management of breast cancer. Radiology 266(2):388–405. doi:10.1148/radiol.12110853

    Article  PubMed  Google Scholar 

  12. Schrading S, Kuhl CK (2015) Breast cancer: influence of taxanes on response assessment with dynamic contrast-enhanced MR imaging. Radiology 150006. doi:10.1148/radiol.2015150006

    Google Scholar 

  13. Cureton EL, Yau C, Alvarado MD, Krontiras H, Ollila DW, Ewing CA, Monnier S, Esserman LJ (2014) Local recurrence rates are low in high-risk neoadjuvant breast cancer in the I-SPY 1 Trial (CALGB 150007/150012; ACRIN 6657). Ann Surg Oncol 21(9):2889–2896. doi:10.1245/s10434-014-3721-7

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mukhtar RA, Yau C, Rosen M, Tandon VJ, I-Spy T, Investigators A, Hylton N, Esserman LJ (2013) Clinically meaningful tumor reduction rates vary by prechemotherapy MRI phenotype and tumor subtype in the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657). Ann Surg Oncol 20(12):3823–3830. doi:10.1245/s10434-013-3038-y

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li JJ, Chen C, Gu Y, Di G, Wu J, Liu G, Shao Z (2014) The role of mammographic calcification in the neoadjuvant therapy of breast cancer imaging evaluation. PLoS One 9(2):e88853. doi:10.1371/journal.pone.0088853

    Article  PubMed  PubMed Central  Google Scholar 

  16. Huber S, Wagner M, Zuna I, Medl M, Czembirek H, Delorme S (2000) Locally advanced breast carcinoma: evaluation of mammography in the prediction of residual disease after induction chemotherapy. Anticancer Res 20(1B):553–558

    CAS  PubMed  Google Scholar 

  17. Keune JD, Jeffe DB, Schootman M, Hoffman A, Gillanders WE, Aft RL (2010) Accuracy of ultrasonography and mammography in predicting pathologic response after neoadjuvant chemotherapy for breast cancer. Am J Surg 199(4):477–484. doi:10.1016/j.amjsurg.2009.03.012

    Article  PubMed  PubMed Central  Google Scholar 

  18. Atkins JJ, Appleton CM, Fisher CS, Gao F, Margenthaler JA (2013) Which imaging modality is superior for prediction of response to neoadjuvant chemotherapy in patients with triple negative breast cancer? J Oncol 2013:964863. doi:10.1155/2013/964863

    Article  PubMed  PubMed Central  Google Scholar 

  19. Marinovich ML, Houssami N, Macaskill P, von Minckwitz G, Blohmer JU, Irwig L (2015) Accuracy of ultrasound for predicting pathologic response during neoadjuvant therapy for breast cancer. Int J Cancer 136(11):2730–2737. doi:10.1002/ijc.29323

    Article  CAS  PubMed  Google Scholar 

  20. Mann RM, Kuhl CK, Kinkel K, Boetes C (2008) Breast MRI: guidelines from the European Society of Breast Imaging. Eur Radiol 18(7):1307–1318. doi:10.1007/s00330-008-0863-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tozaki M, Kobayashi T, Uno S, Aiba K, Takeyama H, Shioya H, Tabei I, Toriumi Y, Suzuki M, Fukuda K (2006) Breast-conserving surgery after chemotherapy: value of MDCT for determining tumor distribution and shrinkage pattern. AJR Am J Roentgenol 186(2):431–439. doi:10.2214/AJR.06.0317

    Article  PubMed  Google Scholar 

  22. Takeda K, Kanao S, Okada T, Ueno T, Toi M, Ishiguro H, Mikami Y, Tanaka S, Togashi K (2012) MRI evaluation of residual tumor size after neoadjuvant endocrine therapy vs. neoadjuvant chemotherapy. Eur J Radiol 81(9):2148–2153. doi:10.1016/j.ejrad.2011.05.013

    Article  PubMed  Google Scholar 

  23. Partridge SC, Gibbs JE, Lu Y, Esserman LJ, Tripathy D, Wolverton DS, Rugo HS, Hwang ES, Ewing CA, Hylton NM (2005) MRI measurements of breast tumor volume predict response to neoadjuvant chemotherapy and recurrence-free survival. AJR Am J Roentgenol 184(6):1774–1781. doi:10.2214/ajr.184.6.01841774

    Article  PubMed  Google Scholar 

  24. Takeda K, Kanao S, Okada T, Kataoka M, Ueno T, Toi M, Ishiguro H, Mikami Y, Togashi K (2012) Assessment of CAD-generated tumor volumes measured using MRI in breast cancers before and after neoadjuvant chemotherapy. Eur J Radiol 81(10):2627–2631. doi:10.1016/j.ejrad.2011.12.013

    Article  PubMed  Google Scholar 

  25. Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O, Lebbe C, Maio M, Binder M, Bohnsack O, Nichol G, Humphrey R, Hodi FS (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 15(23):7412–7420. doi:10.1158/1078-0432.CCR-09-1624

    Article  CAS  PubMed  Google Scholar 

  26. Nishino M, Giobbie-Hurder A, Gargano M, Suda M, Ramaiya NH, Hodi FS (2013) Developing a common language for tumor response to immunotherapy: immune-related response criteria using unidimensional measurements. Clin Cancer Res 19(14):3936–3943. doi:10.1158/1078-0432.CCR-13-0895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Martincich L, Montemurro F, De Rosa G, Marra V, Ponzone R, Cirillo S, Gatti M, Biglia N, Sarotto I, Sismondi P, Regge D, Aglietta M (2004) Monitoring response to primary chemotherapy in breast cancer using dynamic contrast-enhanced magnetic resonance imaging. Breast Cancer Res Treat 83(1):67–76. doi:10.1023/B:BREA.0000010700.11092.f4

    Article  PubMed  Google Scholar 

  28. Cheung YC, Chen SC, Su MY, See LC, Hsueh S, Chang HK, Lin YC, Tsai CS (2003) Monitoring the size and response of locally advanced breast cancers to neoadjuvant chemotherapy (weekly paclitaxel and epirubicin) with serial enhanced MRI. Breast Cancer Res Treat 78(1):51–58

    Article  CAS  PubMed  Google Scholar 

  29. Drisis S, Metens T, Ignatiadis M, Stathopoulos K, Chao SL, Lemort M (2015) Quantitative DCE-MRI for prediction of pathological complete response following neoadjuvant treatment for locally advanced breast cancer: the impact of breast cancer subtypes on the diagnostic accuracy. Eur Radiol. doi:10.1007/s00330-015-3948-0

    PubMed  Google Scholar 

  30. Yu HJ, Chen JH, Mehta RS, Nalcioglu O, Su MY (2007) MRI measurements of tumor size and pharmacokinetic parameters as early predictors of response in breast cancer patients undergoing neoadjuvant anthracycline chemotherapy. J Magn Reson Imaging 26(3):615–623. doi:10.1002/jmri.21060

    Article  PubMed  Google Scholar 

  31. Woodhams R, Kakita S, Hata H, Iwabuchi K, Kuranami M, Gautam S, Hatabu H, Kan S, Mountford C (2010) Identification of residual breast carcinoma following neoadjuvant chemotherapy: diffusion-weighted imaging – comparison with contrast-enhanced MR imaging and pathologic findings. Radiology 254(2):357–366. doi:10.1148/radiol.2542090405

    Article  PubMed  Google Scholar 

  32. Tiling R, Linke R, Untch M, Richter A, Fieber S, Brinkbaumer K, Tatsch K, Hahn K (2001) 18F-FDG PET and 99mTc-sestamibi scintimammography for monitoring breast cancer response to neoadjuvant chemotherapy: a comparative study. Eur J Nucl Med 28(6):711–720

    Article  CAS  PubMed  Google Scholar 

  33. Lee JH, Rosen EL, Mankoff DA (2009) The role of radiotracer imaging in the diagnosis and management of patients with breast cancer: part 2 – response to therapy, other indications, and future directions. J Nucl Med 50(5):738–748. doi:10.2967/jnumed.108.061416

    Article  PubMed  Google Scholar 

  34. Bassa P, Kim EE, Inoue T, Wong FC, Korkmaz M, Yang DJ, Wong WH, Hicks KW, Buzdar AU, Podoloff DA (1996) Evaluation of preoperative chemotherapy using PET with fluorine-18-fluorodeoxyglucose in breast cancer. J Nucl Med 37(6):931–938

    CAS  PubMed  Google Scholar 

  35. Burcombe RJ, Makris A, Pittam M, Lowe J, Emmott J, Wong WL (2002) Evaluation of good clinical response to neoadjuvant chemotherapy in primary breast cancer using [18F]-fluorodeoxyglucose positron emission tomography. Eur J Cancer 38(3):375–379

    Article  CAS  PubMed  Google Scholar 

  36. Kim SJ, Kim SK, Lee ES, Ro J, Kang S (2004) Predictive value of [18F]FDG PET for pathological response of breast cancer to neo-adjuvant chemotherapy. Ann Oncol 15(9):1352–1357. doi:10.1093/annonc/mdh345

    Article  PubMed  Google Scholar 

  37. Dose-Schwarz J, Tiling R, Avril-Sassen S, Mahner S, Lebeau A, Weber C, Schwaiger M, Janicke F, Untch M, Avril N (2010) Assessment of residual tumour by FDG-PET: conventional imaging and clinical examination following primary chemotherapy of large and locally advanced breast cancer. Br J Cancer 102(1):35–41. doi:10.1038/sj.bjc.6605427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Miyake KK, Nakamoto Y, Kanao S, Tanaka S, Sugie T, Mikami Y, Toi M, Togashi K (2014) Journal Club: diagnostic value of (18)F-FDG PET/CT and MRI in predicting the clinicopathologic subtypes of invasive breast cancer. AJR Am J Roentgenol 203(2):272–279. doi:10.2214/AJR.13.11971

    Article  PubMed  Google Scholar 

  39. Iima M, Nakamoto Y, Kanao S, Sugie T, Ueno T, Kawada M, Mikami Y, Toi M, Togashi K (2012) Clinical performance of 2 dedicated PET scanners for breast imaging: initial evaluation. J Nucl Med 53(10):1534–1542. doi:10.2967/jnumed.111.100958

    Article  PubMed  Google Scholar 

  40. Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, Cody R (1993) Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol 11(11):2101–2111

    CAS  PubMed  Google Scholar 

  41. Schelling M, Avril N, Nahrig J, Kuhn W, Romer W, Sattler D, Werner M, Dose J, Janicke F, Graeff H, Schwaiger M (2000) Positron emission tomography using [(18)F]Fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 18(8):1689–1695

    CAS  PubMed  Google Scholar 

  42. Rousseau C, Devillers A, Sagan C, Ferrer L, Bridji B, Campion L, Ricaud M, Bourbouloux E, Doutriaux I, Clouet M, Berton-Rigaud D, Bouriel C, Delecroix V, Garin E, Rouquette S, Resche I, Kerbrat P, Chatal JF, Campone M (2006) Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F]fluorodeoxyglucose positron emission tomography. J Clin Oncol 24(34):5366–5372. doi:10.1200/JCO.2006.05.7406

    Article  PubMed  Google Scholar 

  43. Emmering J, Krak NC, Van der Hoeven JJ, Spreeuwenberg MD, Twisk JW, Meijer S, Pinedo HM, Hoekstra OS (2008) Preoperative [18F] FDG-PET after chemotherapy in locally advanced breast cancer: prognostic value as compared with histopathology. Ann Oncol 19(9):1573–1577. doi:10.1093/annonc/mdn185

    Article  CAS  PubMed  Google Scholar 

  44. Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150S. doi:10.2967/jnumed.108.057307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We appreciate Dr. Yuji Nakamoto, Kyoto University, for his constructive comments and advice regarding FDG-PET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masako Kataoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Kanao, S., Kataoka, M. (2016). Imaging of Tumor Response by Preoperative Systemic Treatment. In: Toi, M., Winer, E., Benson, J., Klimberg, S. (eds) Personalized Treatment of Breast Cancer. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55552-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55552-0_18

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55551-3

  • Online ISBN: 978-4-431-55552-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics