Skip to main content

Deep-Ultraviolet Surface-Enhanced Raman Scattering

  • Chapter
Far- and Deep-Ultraviolet Spectroscopy

Abstract

Surface-enhanced Raman scattering (SERS) is a technique for amplifying a Raman scattering signal, which is intrinsically weak and therefore hard to detect. The Raman enhancement factor can be as high as 102–106 and may even be as high as 1015, which is sufficient to detect Raman scattering from single molecules. By combining this powerful SERS technique with deep-ultraviolet (DUV) resonance Raman spectroscopy, ultrasensitive detection and analysis of molecules by DUV resonance Raman spectroscopy become possible. In this chapter, recent progress in DUV-SERS is reviewed. Also, the available metals for selection as SERS substrates are discussed. As an application of DUV-SERS to molecular nanoimaging, the development of DUV tip-enhanced Raman scattering (TERS) is also described. Finally, some issues to be overcome and future perspectives are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 99, 2957–2975 (1999)

    Article  CAS  Google Scholar 

  2. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1973)

    Article  Google Scholar 

  3. M.G. Albrecht, J.A. Creighton, Anomalously intense Raman-spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217 (1977)

    Article  CAS  Google Scholar 

  4. D.L. Jeanmaire, R. Van Duyne, Surface Raman spectroelectrochemistry. Part 1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode. Electroanal. Chem. 84, 1–20 (1977)

    Google Scholar 

  5. M. Moskovits, Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985)

    Article  CAS  Google Scholar 

  6. S. Kawata (ed.), Near-Field Optics and Surface Plasmon Polaritons (Springer, Berlin, 2001)

    Google Scholar 

  7. S. Nie, S. Emery, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997)

    Article  CAS  Google Scholar 

  8. K. Kneipp, Y. Wang, H. Kneipp, L. Perelman, I. Itzkan, R. Dasari, M. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997)

    Article  CAS  Google Scholar 

  9. T. Dörfer, M. Schmitt, J. Popp, Deep-UV surface-enhanced Raman scattering. J. Raman Spectrosc. 38, 1379–1382 (2007)

    Article  Google Scholar 

  10. E.D. Palik, Handbook of Optical Constants of Solids (Academic, Boston, 1991)

    Google Scholar 

  11. J.C. Lemonnier, G. Jezequel, J. Thomas, Optical properties in the far UV and electronic structure of indium films. J. Phys. C Solid State Phys. 8, 2812–2818 (1975)

    Article  CAS  Google Scholar 

  12. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  13. G.H. Chan, J. Zhao, G.C. Schatz, R. Van Duyne, Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles. J. Phys. Chem. C 112, 13958–13963 (2008)

    Article  CAS  Google Scholar 

  14. C. Langhammer, M. Schwind, B. Kasemo, I. Zoric, Localized surface plasmon resonances in aluminum nanodisks. Nano Lett. 8, 1461–1471 (2008)

    Article  CAS  Google Scholar 

  15. A. Schilling, J. Schilling, C. Reinhardt, B. Chichkov, A superlens for the deep ultraviolet. Appl. Phys. Lett. 95, 121909 (2009)

    Article  Google Scholar 

  16. A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, S. Kawata, Deep-UV tip-enhanced Raman scattering. J. Raman Spectrosc. 40, 1324–1330 (2009)

    Article  CAS  Google Scholar 

  17. Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, S. Kawata, Indium for deep-ultraviolet surface-enhanced resonance Raman scattering. ACS Photon. 1, 598–603 (2014)

    Article  CAS  Google Scholar 

  18. A. Taflove, Computational Electrodynamics: The Finite Difference Time Domain Method (Artech House, London, 1995)

    Google Scholar 

  19. S. Asher, in Handbook of Vibrational Spectroscopy, ed. by J.M. Chalmers, P.R. Griffiths (Wiley, Chichester, 2002)

    Google Scholar 

  20. Y. Kumamoto, A. Taguchi, N.I. Smith, S. Kawata, Deep ultraviolet resonant Raman imaging of a cell. J. Biomed. Opt. 17, 076001 (2012)

    Article  Google Scholar 

  21. B. Ren, X. Lin, Z. Yang, G. Liu, R. Aroca, B. Mao, Z. Tian, Surface-enhanced Raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes. J. Am. Chem. Soc. 125, 9598–9599 (2003)

    Article  CAS  Google Scholar 

  22. X.F. Lin, B. Ren, Z.L. Yang, G.K. Liu, Z.Q. Tian, Surface-enhanced Raman spectroscopy with ultraviolet excitation. J. Raman Spectrosc. 36, 606–612 (2005)

    Article  CAS  Google Scholar 

  23. S.K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, J.F. Löffler, Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays. J. Am. Chem. Soc. 134, 1966–1969 (2012)

    Article  CAS  Google Scholar 

  24. Y. Ekinci, H.H. Solak, J.F. Löffler, Plasmon resonances of aluminum nanoparticles and nanorods. J. Appl. Phys. 104, 083107 (2008)

    Article  Google Scholar 

  25. A. Taguchi, Y. Saito, K. Watanabe, S. Yijian, S. Kawata, Tailoring plasmon resonances in the deep-ultraviolet by size-tunable fabrication of aluminum nanostructures. Appl. Phys. Lett. 101, 081110 (2012)

    Article  Google Scholar 

  26. D.W. Pohl, Near-field optics: light for the world of nano-scale science. Thin Solid Films 264, 250–254 (1995)

    Article  CAS  Google Scholar 

  27. L. Novotny, N.F. van Hulst, Antennas for light. Nat. Photon. 5, 83–90 (2011)

    Article  CAS  Google Scholar 

  28. I.I. Smolyaninov, C.C. Davis, J. Elliott, A.V. Zayats, Resolution enhancement of a surface immersion microscope near the plasmon resonance. Opt. Lett. 30, 382–384 (2005)

    Article  Google Scholar 

  29. D.O. Sigle, E. Perkins, J.J. Baumberg, S. Mahajan, Reproducible deep-UV SERRS on aluminum nanovoids. J. Phys. Chem. Lett. 4, 1449–1452 (2013)

    Article  CAS  Google Scholar 

  30. K.H. Su, Q.H. Wei, X. Zhang, J.J. Mock, D.R. Smith, S. Schultz, Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3, 1087–1090 (2003)

    Article  CAS  Google Scholar 

  31. E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003)

    Article  CAS  Google Scholar 

  32. P. Nordlander, C. Oubre, E. Prodan, K. Li, Plasmon hybridization in nanoparticle dimers. Nano Lett. 4, 899–903 (2004)

    Article  CAS  Google Scholar 

  33. I. Romero, J. Aizpurua, G.W. Bryant, F.J. García de Abajo, Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt. Exp. 14, 9988–9999 (2006)

    Article  Google Scholar 

  34. J. Aizpurua, G.W. Bryant, L.J. Richter, F.J. García de Abajo, Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Phys. Rev. B 71, 235420 (2005)

    Article  Google Scholar 

  35. C.E. Talley, J.B. Jackson, C. Oubre, N.K. Grady, C.W. Hollars, S.M. Lane, T.R. Huser, P. Nordlander, N.J. Halas, Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates. Nano Lett. 5, 1569–1574 (2005)

    Article  CAS  Google Scholar 

  36. P.J. Schuck, D.P. Fromm, A. Sundaramurthy, G.S. Kino, W.E.W. Moerner, Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 94 (2005)

    Google Scholar 

  37. F. Jäckel, A.A. Kinkhabwala, W.E.W. Moerner, Gold bowtie nanoantennas for surface-enhanced Raman scattering under controlled electrochemical potential. Chem. Phys. Lett. 446, 339–343 (2007)

    Article  Google Scholar 

  38. J.N. Farahani, H.J. Eisler, D.W. Pohl, M. Pavius, P. Flückiger, P. Gasser, B. Hecht, Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy. Nanotechnology 18, 125506 (2007)

    Article  Google Scholar 

  39. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Muellen, W.E.W. Moerner, Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photon. 3, 654–657 (2009)

    Article  CAS  Google Scholar 

  40. M. Mivelle, T.S. van Zanten, L. Neumann, N.F. van Hulst, M.F. Garcia-Parajo, Ultrabright bowtie nanoaperture antenna probes studied by single molecule fluorescence. Nano Lett. 12, 5972–5978 (2012)

    Article  CAS  Google Scholar 

  41. R.D. Grober, R.J. Schoelkopf, D.E. Prober, Optical antenna: towards a unity efficiency near-field optical probe. Appl. Phys. Lett. 70, 1354 (1997)

    Article  CAS  Google Scholar 

  42. L. Zhou, Q. Gan, F.J. Bartoli, V. Dierolf, Direct near-field optical imaging of UV bowtie nanoantennas. Opt. Exp. 17, 20301–20306 (2009)

    Article  Google Scholar 

  43. L. Li, S. Fang Lim, A.A. Puretzky, R. Riehn, H.D. Hallen, Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna. Appl. Phys. Lett. 101, 113116 (2012)

    Article  Google Scholar 

  44. A.I. Dragan, C.D. Geddes, Indium nanodeposits: a substrate for metal-enhanced fluorescence in the ultraviolet spectral region. J. Appl. Phys. 108, 094701 (2010)

    Article  Google Scholar 

  45. J. Martin, J. Proust, D. Gérard, J. Plain, Localized surface plasmon resonances in the ultraviolet from large scale nanostructured aluminum films. Opt. Mater. Exp. 3, 954 (2013)

    Article  CAS  Google Scholar 

  46. G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.L. Dai, M. Canepa, F. Bisio, Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays. ACS Nano 7, 5834–5841 (2013)

    Article  CAS  Google Scholar 

  47. N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, Metallized tip amplification of near-field Raman scattering. Opt. Commun. 183, 333–336 (2000)

    Article  CAS  Google Scholar 

  48. R.M. Stöckle, Y.D. Suh, V. Deckert, R. Zenobi, Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000)

    Article  Google Scholar 

  49. B. Pettinger, G. Picardi, R. Schuster, G. Ertl, Surface enhanced Raman spectroscopy: towards single molecular spectroscopy. Electrochemistry 68, 942–949 (2000)

    CAS  Google Scholar 

  50. B. Pettinger, G. Picardi, R. Schuster, G. Ertl, Surface-enhanced and STM-tip-enhanced Raman spectroscopy at metal surfaces. Single Mol. 5, 285–294 (2002)

    Article  Google Scholar 

  51. N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, S. Kawata, Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy. Chem. Phys. Lett. 376, 174–180 (2003)

    Article  CAS  Google Scholar 

  52. T. Yano, P. Verma, S. Kawata, Y. Inouye, Diameter-selective near-field Raman analysis and imaging of isolated carbon nanotube bundles. Appl. Phys. Lett. 88, 093125 (2006)

    Article  Google Scholar 

  53. A. Hartschuh, E.J. Sánchez, X.S. Xie, L. Novotny, High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503 (2003)

    Article  Google Scholar 

  54. N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, Near-field Raman imaging of organic molecules by an apertureless metallic probe scanning optical microscope. J. Chem. Phys. 117, 1296–1301 (2002)

    Article  CAS  Google Scholar 

  55. H. Furukawa, S. Kawata, Local field enhancement with an apertureless near-field-microscope probe. Opt. Commun. 148, 221–224 (1998)

    Article  CAS  Google Scholar 

  56. E.J. Sánchez, L. Novotny, X.S. Xie, Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys. Rev. Lett. 82, 4014–4017 (1999)

    Article  Google Scholar 

  57. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford/New York, 1959)

    Google Scholar 

  58. Y. Inouye, S. Kawata, Near-field scanning optical microscope with a metallic probe tip. Opt. Lett. 19, 159 (1994)

    Article  CAS  Google Scholar 

  59. S. Kawata, Y. Inouye, P. Verma, Plasmonics for near-field nano-imaging and superlensing. Nat. Photon. 3, 388–394 (2009)

    Article  CAS  Google Scholar 

  60. N. Anderson, A. Hartschuh, S. Cronin, L. Novotny, Nanoscale vibrational analysis of single-walled carbon nanotubes. J. Am. Chem. Soc. 127, 2533–2537 (2005)

    Article  CAS  Google Scholar 

  61. T. Yano, T. Ichimura, S. Kuwahara, F. H’Dhili, K. Uetsuki, Y. Okuno, P. Verma, S. Kawata, Tip-enhanced nano-Raman analytical imaging of locally induced strain distribution in carbon nanotubes. Nat. Commun. 4, 2592 (2013)

    Article  Google Scholar 

  62. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, S. Kawata, Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging. Phys. Rev. Lett. 92, 220801 (2004)

    Article  Google Scholar 

  63. A. Rasmussen, V. Deckert, Surface- and tip-enhanced Raman scattering of DNA components. J. Raman Spectrosc. 37, 311–317 (2006)

    Article  CAS  Google Scholar 

  64. C.C. Neacsu, J. Dreyer, N. Behr, M.B. Raschke, Scanning-probe Raman spectroscopy with single-molecule sensitivity. Phys. Rev. B 73, 193406 (2006)

    Article  Google Scholar 

  65. K.F. Domke, D. Zhang, B. Pettinger, Toward Raman fingerprints of single dye molecules at atomically smooth Au(111). J. Am. Chem. Soc. 128, 14721–14727 (2006)

    Article  CAS  Google Scholar 

  66. N. Hayazawa, H. Watanabe, Y. Saito, S. Kawata, Towards atomic site-selective sensitivity in tip-enhanced Raman spectroscopy. J. Chem. Phys. 125, 244706–244706 (2006)

    Article  Google Scholar 

  67. W. Zhang, B.S. Yeo, T. Schmid, R. Zenobi, Single molecule tip-enhanced Raman spectroscopy with silver tips. J. Phys. Chem. C 111, 1733–1738 (2007)

    Article  CAS  Google Scholar 

  68. T. Ichimura, H. Watanabe, Y. Morita, P. Verma, S. Kawata, Y. Inouye, Temporal fluctuation of tip-enhanced Raman spectra of adenine molecules. J. Phys. Chem. C 111, 9460–9464 (2007)

    Article  CAS  Google Scholar 

  69. J. Steidtner, B. Pettinger, Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys. Rev. Lett. 100, 236101 (2008)

    Article  Google Scholar 

  70. D. Mehtani, N. Lee, R.D. Hartschuh, A. Kisliuk, M.D. Foster, A.P. Sokolov, J.F. Maguire, Nano-Raman spectroscopy with side-illumination optics. J. Raman Spectrosc. 36, 1068–1075 (2005)

    Article  CAS  Google Scholar 

  71. N. Hayazawa, M. Motohashi, Y. Saito, H. Ishitobi, A. Ono, T. Ichimura, P. Verma, S. Kawata, Visualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopy. J. Raman Spectrosc. 38, 684–696 (2007)

    Article  CAS  Google Scholar 

  72. S. Fodor, R.P. Rava, T.R. Hays, T.G. Spiro, Ultraviolet resonance Raman-spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation. J. Am. Chem. Soc. 107, 1520–1529 (1985)

    Article  CAS  Google Scholar 

  73. D.C. Blazej, W.L. Peticolas, Ultraviolet resonant Raman spectroscopy of nucleic acid components. Proc. Natl. Acad. Sci. U.S.A. 74, 2639–2643 (1977)

    Article  CAS  Google Scholar 

  74. L.D. Ziegler, B. Hudson, D.P. Strommen, W.L. Peticolas, Resonance Raman spectra of mononucleotides obtained with 266 and 213 nm ultraviolet radiation. Biopolymers 23, 2067–2081 (1984)

    Article  CAS  Google Scholar 

  75. Y. Kumamoto, A. Taguchi, N.I. Smith, S. Kawata, Deep UV resonant Raman spectroscopy for photodamage characterization in cells. Biomed Opt. Exp. 2, 927–936 (2011)

    Article  CAS  Google Scholar 

  76. M.W. Knight, N.S. King, L. Liu, H.O. Everitt, P. Nordlander, N.J. Halas, Aluminum for plasmonics. ACS Nano 8, 834–840 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Taguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Taguchi, A. (2015). Deep-Ultraviolet Surface-Enhanced Raman Scattering. In: Ozaki, Y., Kawata, S. (eds) Far- and Deep-Ultraviolet Spectroscopy. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55549-0_8

Download citation

Publish with us

Policies and ethics