Skip to main content

The Role of Multiple Imaging Modalities to Disclose the Mechanism of ACS Angioscopy in Comparison to Other Imaging Modalities Including OCT, IVUS and CTA

  • Chapter
  • 539 Accesses

Abstract

Aims: Whilst pathological and optical coherence tomography (OCT) studies have indicated that ACS lesions have either ruptured fibrous (RFC-ACS) or intact (IFC-ACS) fibrous caps, CT angiographic (CTA) characteristics of RFC-ACS include low-attenuation plaques and positive plaque remodelling. However, features associated with IFC-ACS have not been previously described. The aim of this study was to assess the CTA characteristics of IFC-ACS lesions.

Methods and Results: Of the 66 patients with ACS or stable angina that consented to multiple imaging procedures, 57 culprit lesions in 57 patients were evaluated with sufficient image quality of angioscopy, OCT, IVUS and CTA. Whilst intraluminal thrombus was assessed by OCT or angioscopy, culprit lesions were classified further by OCT-based demonstration of fibrous cap integrity. Of 35 culprit lesions with ACS, OCT revealed IFC with thrombus in 10 (29 %) and RFC in the remaining 25 (71 %); all 22 lesions with stable angina had intact fibrous caps. Fibrous caps were significantly thinner in RFC-ACS than in IFC-ACS and stable angina (45 ± 12 μm, 131 ± 57 μm, 321 ± 146 μm, respectively; p = 0.001). CT-verified low-attenuation plaques were more frequently observed in RFC-ACS than in IFC-ACS and stable angina (88 %, 40 %, 18 %; p = 0.001) lesions. Similarly, positiveremodelling was more predominantly seen in RFC-ACS than in IFC-ACS and stable angina (96 %, 20 %, 14 %; p = 0.001). However, none of the specific CT angiography features clearly distinguished IFC-ACS from stable lesions.

Conclusion: This report is derived from our previous study proposing for the first time that nondisrupted culprit lesions (IFC-ACS) would represent pathological plaque erosions. IFC-ACS lesions based on OCT and angioscopy features demonstrated less low-attenuation plaque and less positive remodelling than RFC-ACS by CT angiography. Since there are no unique CT features of IFC-ACS lesions to enable their clear distinction from stable lesions, it will be difficult to develop CT-based non-invasive imaging techniques to allow the clear identification of subjects at high risk of developing ACS due to IFC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Davies MJ. The composition of coronary-artery plaques. N Engl J Med. 1997;336:1312–4.

    Article  CAS  PubMed  Google Scholar 

  2. Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med. 1997;336:1276–82.

    Article  CAS  PubMed  Google Scholar 

  3. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262–75.

    Article  CAS  PubMed  Google Scholar 

  4. Kolodgie FD, Virmani R, Burke AP, Farb A, Weber DK, Kutys R, et al. Pathologic assessment of the vulnerable human coronary plaque. Heart. 2004;90:1385–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation. 2003;108:1772–8.

    Article  PubMed  Google Scholar 

  6. Narula J, Willerson JT. Prologue: detection of vulnerable plaque. J Am Coll Cardiol. 2006;47:C1.

    Article  Google Scholar 

  7. Muller JE, Tawakol A, Kathiresan S, Narula J. New opportunities for identification and reduction of coronary risk: treatment of vulnerable patients, arteries, and plaques. J Am Coll Cardiol. 2006;47:C2–6.

    Article  PubMed  Google Scholar 

  8. Narula J, Finn AV, Demaria AN. Picking plaques that pop. J Am Coll Cardiol. 2005;45:1970–3.

    Article  PubMed  Google Scholar 

  9. Schaar JA, Muller JE, Falk E, Virmani R, Fuster V, Serruys PW, et al. Terminology for high-risk and vulnerable coronary artery plaques. Report of a meeting on the vulnerable plaque, June 17 and 18, 2003, Santorini, Greece. Eur Heart J. 2004;25:1077–82.

    Article  PubMed  Google Scholar 

  10. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47:C13–8.

    Article  CAS  PubMed  Google Scholar 

  11. Farb A, Burke AP, Tang AL, Liang TY, Mannan P, Smialek J, et al. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation. 1996;93:1354–63.

    Article  CAS  PubMed  Google Scholar 

  12. Arbustini E, Dal Bello B, Morbini P, Burke AP, Bocciarelli M, Specchia G, et al. Plaque erosion is a major substrate for coronary thrombosis in acute myocardial infarction. Heart. 1999;82:269–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ozaki Y, Okumura M, Ismail TF, Motoyama S, Naruse H, Hattori K, et al. Coronary CT angiographic characteristics of culprit lesions in acute coronary syndromes not related to plaque rupture as defined by optical coherence tomography and angioscopy. Eur Heart J. 2011;32:2814–23.

    Article  PubMed  Google Scholar 

  14. Jia H, Abtahian F, Aguirre AD, Lee S, Chia S, Lowe H, et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol. 2013;62(19):1748–58.

    Article  PubMed  Google Scholar 

  15. McPherson DD, Sirna SJ, Hiratzka LF, Thorpe L, Armstrong ML, Marcus ML, et al. Coronary arterial remodeling studied by high-frequency epicardial echocardiography: an early compensatory mechanism in patients with obstructive coronary atherosclerosis. J Am Coll Cardiol. 1991;17:79–86.

    Article  CAS  PubMed  Google Scholar 

  16. Schoenhagen P, Ziada KM, Kapadia SR, Crowe TD, Nissen SE, Tuzcu EM. Extent and direction of arterial remodeling in stable versus unstable coronary syndromes : an intravascular ultrasound study. Circulation. 2000;101:598–603.

    Article  CAS  PubMed  Google Scholar 

  17. Varnava AM, Mills PG, Davies MJ. Relationship between coronary artery remodeling and plaque vulnerability. Circulation. 2002;105:939–43.

    Article  PubMed  Google Scholar 

  18. Hassani SE, Mintz GS, Fong HS, Kim SW, Xue Z, Pichard AD, et al. Negative remodeling and calcified plaque in octogenarians with acute myocardial infarction: an intravascular ultrasound analysis. J Am Coll Cardiol. 2006;47:2413–9.

    Article  PubMed  Google Scholar 

  19. Schuijf JD, Bax JJ, Jukema JW, Lamb HJ, Warda HM, Vliegen HW, et al. Feasibility of assessment of coronary stent patency using 16-slice computed tomography. Am J Cardiol. 2004;94:427–30.

    Article  PubMed  Google Scholar 

  20. Schroeder S, Kopp AF, Baumbach A, Meisner C, Kuettner A, Georg C, et al. Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol. 2001;37:1430–5.

    Article  CAS  PubMed  Google Scholar 

  21. Hoffmann MH, Shi H, Schmitz BL, Schmid FT, Lieberknecht M, Schulze R, et al. Noninvasive coronary angiography with multislice computed tomography. JAMA. 2005;293:2471–8.

    Article  CAS  PubMed  Google Scholar 

  22. Hoffmann U, Moselewski F, Nieman K, Jang IK, Ferencik M, Rahman AM, et al. Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J Am Coll Cardiol. 2006;47:1655–62.

    Article  PubMed  Google Scholar 

  23. Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, Sato T, et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol. 2007;50:319–26.

    Article  PubMed  Google Scholar 

  24. Motoyama S, Sarai M, Harigaya H, Anno H, Inoue K, Hara T, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54:49–57.

    Article  PubMed  Google Scholar 

  25. Kubo T, Imanishi T, Takarada S, Kuroi A, Ueno S, Yamano T, et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol. 2007;50:933–9.

    Article  PubMed  Google Scholar 

  26. Motoyama S, Kondo T, Anno H, Sugiura A, Ito Y, Mori K, et al. Atherosclerotic plaque characterization by 0.5-mm-slice multislice computed tomographic imaging. Circ J. 2007;71:363–6.

    Article  PubMed  Google Scholar 

  27. de Feyter PJ, Ozaki Y, Baptista J, Escaned J, Di Mario C, de Jaegere PP, et al. Ischemia-related lesion characteristics in patients with stable or unstable angina. A study with intracoronary angioscopy and ultrasound. Circulation. 1995;92:1408–13.

    Article  PubMed  Google Scholar 

  28. Ozaki Y, Violaris AG, Kobayashi T, Keane D, Camenzind E, Di Mario C, et al. Comparison of coronary luminal quantification obtained from intracoronary ultrasound and both geometric and videodensitometric quantitative angiography before and after balloon angioplasty and directional atherectomy. Circulation. 1997;96:491–9.

    Article  CAS  PubMed  Google Scholar 

  29. Ozaki Y, Okumura M, Ismail TF, Naruse H, Hattori K, Kan S, et al. The fate of incomplete stent apposition with drug-eluting stents: an optical coherence tomography-based natural history study. Eur Heart J. 2010;31:1470–6.

    Article  PubMed  Google Scholar 

  30. Prati F, Regar E, Mintz GS, Arbustini E, Di Mario C, Jang IK, et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J. 2010;31:401–15.

    Article  PubMed  Google Scholar 

  31. Barlis P, Serruys PW, Gonzalo N, van der Giessen WJ, de Jaegere PJ, Regar E. Assessment of culprit and remote coronary narrowings using optical coherence tomography with long-term outcomes. Am J Cardiol. 2008;102:391–5.

    Article  PubMed  Google Scholar 

  32. Gonzalo N, Garcia-Garcia HM, Regar E, Barlis P, Wentzel J, Onuma Y, et al. In vivo assessment of high-risk coronary plaques at bifurcations with combined intravascular ultrasound and optical coherence tomography. JACC Cardiovasc Imaging. 2009;2:473–82.

    Article  PubMed  Google Scholar 

  33. Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation. 2005;111:1551–5.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Kume T, Akasaka T, Kawamoto T, Ogasawara Y, Watanabe N, Toyota E, et al. Assessment of coronary arterial thrombus by optical coherence tomography. Am J Cardiol. 2006;97:1713–7.

    Article  PubMed  Google Scholar 

  35. Stamper D, Weissman NJ, Brezinski M. Plaque characterization with optical coherence tomography. J Am Coll Cardiol. 2006;47:C69–79.

    Article  PubMed  Google Scholar 

  36. Ueda Y, Asakura M, Hirayama A, Komamura K, Hori M, Komada K. Intracoronary morphology of culprit lesions after reperfusion in acute myocardial infarction: serial angioscopic observations. J Am Coll Cardiol. 1996;27:606–10.

    Article  CAS  PubMed  Google Scholar 

  37. Jang IK, Bouma BE, Kang DH, Park SJ, Park SW, Seung KB, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol. 2002;39:604–9.

    Article  PubMed  Google Scholar 

  38. Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106:1640–5.

    Article  PubMed  Google Scholar 

  39. Keane D, Haase J, Slager CJ, Montauban van Swijndregt E, Lehmann KG, Ozaki Y, et al. Comparative validation of quantitative coronary angiography systems. Results and implications from a multicenter study using a standardized approach. Circulation. 1995;91:2174–83.

    Article  CAS  PubMed  Google Scholar 

  40. Ozaki Y, Yamaguchi T, Suzuki T, Nakamura M, Kitayama M, Nishikawa H, et al. Impact of cutting balloon angioplasty (CBA) prior to bare metal stenting on restenosis. Circ J. 2007;71:1–8.

    Article  PubMed  Google Scholar 

  41. Ozaki Y. We should use the OCT-based clinical term “acute coronary syndrome with intact fibrous cap (ACS-IFC)” rather than the pathology term “plaque erosion”. J Am Coll Cardiol. 2014;63:2745.

    Article  PubMed  Google Scholar 

  42. Prati F, Uemura S, Souteyrand G, Virmani R, Motreff P, Di Vito L, et al. OCT-based diagnosis and management of STEMI associated with intact fibrous cap. JACC Cardiovasc Imaging. 2013;6:283–7.

    Article  PubMed  Google Scholar 

  43. Braunwald E. Coronary plaque erosion: recognition and management. JACC Cardiovasc Imaging. 2013;6:288–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Ozaki M.D., FACC, FESC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Ozaki, Y. et al. (2015). The Role of Multiple Imaging Modalities to Disclose the Mechanism of ACS Angioscopy in Comparison to Other Imaging Modalities Including OCT, IVUS and CTA. In: Mizuno, K., Takano, M. (eds) Coronary Angioscopy. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55546-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55546-9_2

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55545-2

  • Online ISBN: 978-4-431-55546-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics