Skip to main content

Pharmacological Intervention

  • Chapter
  • 513 Accesses

Abstract

Ischemic heart disease is a life-threatening disorder; especially acute coronary syndrome (ACS) is a major cause of death in the world. Coronary arteries of angiographic significant stenosis with patients’ symptoms or certified myocardial ischemia are generally administered by revascularization therapies, such as coronary artery bypass surgery and percutaneous coronary intervention using balloon angioplasty or metallic stent deployment. However, ACS often arises from mild to moderate stenosis without the evidence of myocardial ischemia in a brief period. Accurate prospect of ACS is therefore complicated at the present, and pharmacological intervention as preventive insurance is extremely important. Among medical treatment for coronary risk factors, lipid-lowering therapy represented by administration of HMG-CoA reductase inhibitor (statin) is the most powerful, practical, and established way to prevent against ACS. From an angioscopic point of view, morphological changes in atherosclerotic coronary plaque focused on lipid-lowering intervention are reviewed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation. 1999;92:657–71.

    Article  Google Scholar 

  2. Libby P. Current concepts of the pathogenesis of the acute coronary syndromes. Circulation. 2001;1004:365–72.

    Article  Google Scholar 

  3. Farb A, Burke AP, Tang AL, et al. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation. 1996;93:1354–63.

    Article  CAS  PubMed  Google Scholar 

  4. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation. 2003;108:1664–72.

    Article  PubMed  Google Scholar 

  5. Kolodgie FD, Virmani R, Burke AP, et al. Pathologic assessment of the vulnerable human coronary plaque. Heart. 2004;90:1385–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Schaar JA, Muller JE, Falk E, et al. Terminology of high-risk and vulnerable coronary artery plaques. Report of a meeting on the vulnerable plaque, June 17 and 18, Santorini, Greece. Eur Heart J. 2004;25:1077–82.

    Article  PubMed  Google Scholar 

  7. Fuster V, Stein B, Ambrose JA, et al. Atherosclerotic plaque rupture and thrombosis: evolving concepts. Circulation. 1990;82:II30–42.

    Google Scholar 

  8. Stone GW, Maehara A, Lansky AJ, et al. A prospective natural history study of coronary atherosclerosis. N Engl J Med. 2011;364:226–35.

    Article  CAS  PubMed  Google Scholar 

  9. Honda Y, Fitzgerald PJ. Frontiers in intravascular imaging technologies. Circulation. 2008;117:2024–37.

    Article  PubMed  Google Scholar 

  10. Nair A, Kuban BD, Tuzcu EM, et al. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation. 2002;106:2200–6.

    Article  PubMed  Google Scholar 

  11. Kawasaki M, Takatsu H, Noda T, et al. In vivo quantitative tissue characterization of human coronary arterial plaques by use of integrated backscatter intravascular ultrasound and comparison with angioscopic findings. Circulation. 2002;105:2487–92.

    Article  PubMed  Google Scholar 

  12. Yabushita H, Bouma BE, Houser SL, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106:1640–5.

    Article  PubMed  Google Scholar 

  13. Moreno PR, Lodder RA, Purushothaman KR, et al. Detection of lipid pool, thin cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation. 2002;105:923–7.

    Article  PubMed  Google Scholar 

  14. Asakura M, Ueda Y, Nanto S, et al. Remodeling of in-stent neointima, which become thinner and transparent over 3 years: serial angiographic and angioscopic follow-up. Circulation. 1998;97:2003–6.

    Article  CAS  PubMed  Google Scholar 

  15. Sakai S, Mizuno K, Yokoyama S, et al. Morphological changes in infarct-related plaque after coronary stent placement: a serial angioscopy study. J Am Coll Cardiol. 2003;42:1558–65.

    Article  PubMed  Google Scholar 

  16. Kotani J, Awata M, Nanto S, et al. Incomplete neointimal coverage of sirolimus-eluting stents: angioscopic findings. J Am Coll Cardiol. 2006;47:2108–11.

    Article  CAS  PubMed  Google Scholar 

  17. Takano M, Ohba T, Inami S, et al. Angioscopic differences in neointimal coverage and in persistence of thrombus between sirolimus-eluting stents and bare metal stents after a 6-month implantation. Eur Heart J. 2006;27:2189–95.

    Article  CAS  PubMed  Google Scholar 

  18. Awata M, Kotani J, Uematsu M, et al. Serial angioscopic evidence of incomplete neointimal coverage after sirolimus-eluting stent implantation: comparison with bare-metal stent. Circulation. 2007;116:910–16.

    Article  CAS  PubMed  Google Scholar 

  19. Takano M, Yamamoto M, Xie Y, et al. Serial long-term evaluation of neointimal stent coverage and thrombus after sirolimus-eluting stent implantation by use of coronary angioscopy. Heart. 2007;93:1353–6.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Takano M, Yamamoto M, Murakami D, et al. Lack of association large angiographic late loss and low risk of in-stent thrombus: angioscopic comparison between paclitaxel- and sirolimus-eluting stent. Circ Cardiovasc Interv. 2008;1:20–7.

    Article  PubMed  Google Scholar 

  21. Takano M, Mizuno K. Coronary angioscopic evaluation for serial changes of luminal appearance after pharmacological and catheter interventions. Circ J. 2010;74:240–5.

    Article  PubMed  Google Scholar 

  22. Mizuno K, Satomura K, Miyamoto A, et al. Angioscopic evaluation of coronary-artery thrombi in acute coronary syndromes. N Engl J Med. 1992;326:287–91.

    Article  CAS  PubMed  Google Scholar 

  23. Okamatsu K, Takano M, Sakai S, et al. Elevated troponin T levels and lesion characteristics in non-ST elevation acute coronary syndromes. Circulation. 2004;109:465–70.

    Article  CAS  PubMed  Google Scholar 

  24. MacNeill BD, Lowe HC, Takano M, et al. Intravascular modalities for detection of vulnerable plaque: current status. Arterioscler Thromb Vasc Biol. 2003;23:1333–42.

    Article  CAS  PubMed  Google Scholar 

  25. Mizuno K, Miyamoto A, Satomura K, et al. Angioscopic morphology in patients with acute coronary disorders. Lancet. 1991;337:809–12.

    Article  CAS  PubMed  Google Scholar 

  26. Ueda Y, Asakura M, Yamaguchi O, et al. The healing process of infarct-related plaques. Insights from 18 months of serial angioscopic follow-up. J Am Coll Cardiol. 2001;38:1916–22.

    Article  CAS  PubMed  Google Scholar 

  27. Takano M, Mizuno K, Yokoyama S, et al. Changes in coronary plaque color and morphology by lipid-lowering therapy with atorvastatin: serial evaluation by coronary angioscopy. J Am Coll Cardiol. 2003;42:680–6.

    Article  CAS  PubMed  Google Scholar 

  28. Ishibashi F, Yokoyama S, Miyahara K, et al. Quantitative colorimetry of atherosclerotic plaque using the L*a*b* color space during angioscopy for the detection of lipid cores underneath thin fibrous cap. Int J Cardiovasc Imaging. 2007;6:679–91.

    Article  Google Scholar 

  29. Kawano T, Honye J, Takayama T, et al. Compositional analysis of angioscopic yellow plaques with intravascular ultrasound radiofrequency data. Int J Cardiol. 2008;125:74–8.

    Article  PubMed  Google Scholar 

  30. Yamamoto M, Takano M, Okamatsu K, et al. Relationship between thin cap fibroatheroma identified by virtual histology and angioscopic yellow plaque in quantitative analysis with colorimetry. Circ J. 2009;73:497–502.

    Article  PubMed  Google Scholar 

  31. Kubo T, Imanishi T, Takarada S, et al. Implication of plaque color classification for assessing plaque vulnerability: a coronary angioscopy and optical coherence tomography investigation. JACC Cardiovasc Interv. 2008;1:74–80.

    Article  PubMed  Google Scholar 

  32. Takano M, Jang IK, Inami S, et al. In vivo comparison of optical coherence tomography and angioscopy for the evaluation of coronary plaque characteristics. Am J Cardiol. 2008;101:471–6.

    Article  PubMed  Google Scholar 

  33. Takano M, Mizuno K, Okamatsu K, et al. Mechanical and structural characteristics of vulnerable plaques: analysis by coronary angioscopy and intravascular ultrasound. J Am Coll Cardiol. 2001;38:99–104.

    Article  CAS  PubMed  Google Scholar 

  34. Ueda Y, Ohtani T, Shimizu M, et al. Assessment of plaque vulnerability by angioscopic classification of plaque color. Am Heart J. 2004;148:333–5.

    Article  PubMed  Google Scholar 

  35. Uchida Y, Nakamura F, Tomaru T, et al. Prediction of acute coronary syndromes by percutaneous coronary angioscopy in patients with stable angina. Am Heart J. 1995;130:195–203.

    Article  CAS  PubMed  Google Scholar 

  36. Ohtani T, Ueda Y, Mizote I, et al. Number of yellow plaques detected in a coronary artery is associated with future risk of acute coronary syndrome: detection of vulnerable patients by angioscopy. J Am Coll Cardiol. 2006;247:2194–200.

    Article  Google Scholar 

  37. Ishibashi F, Mizuno K, Kawamura A, et al. High yellow color intensity by angioscopy with quantitative colorimetry to identify high-risk features in culprit lesions of patients with acute coronary syndromes. Am J Cardiol. 2007;100:1207–11.

    Article  PubMed  Google Scholar 

  38. Kubo T, Imanishi T, Takarada S, et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol. 2007;50:933–9.

    Article  PubMed  Google Scholar 

  39. Brown MS, Goldstein JL. Atherosclerosis. Scavenging for receptors. Nature. 1990;343:508–9.

    Article  CAS  PubMed  Google Scholar 

  40. Shah PK, Falk E, Badimon JJ, et al. human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture. Circulation. 1995;15:1565–9.

    Google Scholar 

  41. Bocan TM. Pleiotropic effects of HMG-CoA reductase inhibitors. Curr Opin Investig Drugs. 2002;3:1312–17.

    CAS  PubMed  Google Scholar 

  42. No authors listed. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet. 1994;344:1383–89.

    Google Scholar 

  43. No authors listed. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and broad range of initial cholesterol levels. The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. N Engl J Med. 1998;339:1349–57.

    Google Scholar 

  44. No authors listed. Effect of simvastatin on coronary atheroma: the Multicenter Anti-Atheroma Study (MAAS). Lancet. 1994;344:633–8.

    Google Scholar 

  45. Asakura M, Ueda Y, Yamaguchi O, et al. Extensive development of vulnerable plaques as a pan-coronary process in patients with myocardial infarction: an angioscopic study. J Am Coll Cardiol. 2001;37:1284–8.

    Article  CAS  PubMed  Google Scholar 

  46. Takano M, Inami S, Ishibashi F, et al. Angioscopic follow-up study of non-culprit ruptured plaques. J Am Coll Cardiol. 2005;45:652–8.

    Article  PubMed  Google Scholar 

  47. Hirayama A, Saito S, Ueda Y, et al. Qualitative and quantitative changes in coronary plaque associated with atorvastatin therapy. Circ J. 2009;73:718–25.

    Article  CAS  PubMed  Google Scholar 

  48. Kodama K, Komatsu S, Ueda Y, et al. Stabilization and regression of coronary plaques treated with pitavastatin proven by angioscopy and intravascular ultrasound-the TOGETHAR trial. Circ J. 2010;74:1922–8.

    Article  CAS  PubMed  Google Scholar 

  49. Osawa H, Uchida Y, Fujimori Y, et al. Angioscopic evaluation of stabilizing effects of an antilipidemic agent, bezafibrate, on coronary artery plaques in patients with coronary artery disease: a multicenter prospective study. Jpn Heart J. 2002;43:319–31.

    Article  Google Scholar 

  50. Crisby M, Nordin-Fredriksson G, Shah PK, et al. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases activity and cell death in human carotid plaques: implications for plaque stabilization. Circulation. 2001;103:926–33.

    Article  CAS  PubMed  Google Scholar 

  51. Takarada S, Imanishi T, Kubo T, et al. Effect of statin therapy on coronary fibrous-cap thickness in patients with acute coronary syndrome: assessment by optical coherence tomography study. Atherosclerosis. 2009;202:491–7.

    Article  CAS  PubMed  Google Scholar 

  52. Schartl M, Bocksch W, Koschyk DH, et al. Use of intravascular ultrasound to compare effects of different strategies of lipid-lowering therapy on plaque volume and composition in patients with coronary artery disease. Circulation. 2001;104:387–92.

    Article  CAS  PubMed  Google Scholar 

  53. Okazaki S, Yokoyama T, Miyauchi K, et al. Early statin treatment in patients with acute coronary syndrome: demonstration of the beneficial effect on atherosclerotic lesions by serial volumetric intravascular ultrasound analysis during half a year after coronary event: the ESTABLISH study. Circulation. 2004;110:1061–8.

    Article  CAS  PubMed  Google Scholar 

  54. Nissen SE, Nicholls SJ, Sipahi I, et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA. 2006;295:1556–65.

    Article  CAS  PubMed  Google Scholar 

  55. Schoenhagen P, Tuzcu EM, Apperson-Hansen C, et al. Determinants of arterial wall remodeling during lipid-lowering therapy: serial intravascular ultrasound observations from the Reversal of Atherosclerosis with Aggressive Lipid Lowering Therapy (REVERSAL) trial. Circulation. 2006;113:2826–34.

    Article  CAS  PubMed  Google Scholar 

  56. Kawasaki M, Sano K, Okubo M, et al. Volumetric quantitative analysis of tissue characteristics of coronary plaques after statin therapy using three-dimensional integrated backscatter intravascular ultrasound. J Am Coll Cardiol. 2005;45:1946–53.

    Article  CAS  PubMed  Google Scholar 

  57. Hong MK, Park DW, Lee CW, et al. Effects of statin treatments on coronary plaques assessed by volumetric virtual histology intravascular ultrasound analysis. JACC Cardiovasc Interv. 2009;2:679–88.

    Article  PubMed  Google Scholar 

  58. Kini AS, Baber U, Kovacic JC, et al. Changes in plaque lipid content after short-term intensive versus standard statin therapy: the YELLOW trial (reduction in yellow plaque by aggressive lipid-lowering therapy). J Am Coll Cardiol. 2013;62:21–9.

    Article  CAS  PubMed  Google Scholar 

  59. Nissen SE, Tuzcu EM, Libby P, et al. Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: the CAMELOT study: a randomized controlled trial. JAMA. 2004;292:2217–25.

    Article  CAS  PubMed  Google Scholar 

  60. Nissen SE, Nicholls SJ, Wolski K, et al. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA. 2008;299:1561–73.

    Article  CAS  PubMed  Google Scholar 

  61. Yokoyama S, Takano M, Yamamoto M, et al. Extended follow-up by serial angioscopic observation for bare-metal stents in native coronary arteries: from healing response to atherosclerotic transformation of neointima. Circ Cardiovasc Interv. 2009;2:205–12.

    Article  PubMed  Google Scholar 

  62. Takano M, Yamamoto M, Inami S, et al. Appearance of lipid-laden intima and neovascularization after implantation of bare-metal stents: extended late-phase observation by intracoronary optical coherence tomography. J Am Coll Cardiol. 2009;55:26–32.

    Article  PubMed  Google Scholar 

  63. Higo T, Ueda Y, Oyabu J, et al. Atherosclerotic and thrombogenic neointima formed over sirolimus-eluting stent: an angioscopic study. JACC Cardiovasc Imaging. 2009;2:616–24.

    Article  PubMed  Google Scholar 

  64. Nakazawa G, Otsuka F, Nakano M, et al. The pathology of neoatherosclerosis in human coronary implants bare-metal and drug eluting stents. J Am Coll Cardiol. 2011;57:1314–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Takano M, Yamamoto M, Mizuno K. Two cases of coronary stent thrombosis very late after bare-metal stenting. JACC Cardiovasc Interv. 2009;2:1286–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masamichi Takano M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Takano, M. (2015). Pharmacological Intervention. In: Mizuno, K., Takano, M. (eds) Coronary Angioscopy. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55546-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55546-9_19

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55545-2

  • Online ISBN: 978-4-431-55546-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics