Skip to main content

Molecular Genetics of Renal Cell Carcinoma

  • Chapter
  • First Online:
Renal Cell Carcinoma

Abstract

In the last decade, from the early large-scale multigene profiling using traditional Sanger sequencing to the more recent next-generation whole-exome and whole-genome sequencing, the genomic landscapes of renal cell carcinoma (RCC), consisting mainly of clear-cell, papillary (1 and 2), and chromophobe subtypes, have been characterized. This genomic information, coupled with DNA methylation, has shed light on the molecular biology of RCC and created tremendous opportunities for future research that hopefully will lead to improvement in diagnosis, prognosis, treatment, and prevention of RCC. This chapter will summarize the most recent genomic and DNA methylation profiles of these three subtypes of RCC and highlight the major biological pathways involved and their clinical relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albiges L, Guegan J, Le Formal A et al (2014) MET is a potential target across all papillary renal cell carcinomas: result from a large molecular study of pRCC with CGH array and matching gene expression array. Clin Cancer Res 20(13):3411–3421

    Article  CAS  PubMed  Google Scholar 

  2. Amin MB, Corless CL, Renshaw AA et al (1997) Papillary (chromophil) renal cell carcinoma: histomorphologic characteristics and evaluation of conventional pathologic prognostic parameters in 62 cases. Am J Surg Pathol 21(6):621–635

    Article  CAS  PubMed  Google Scholar 

  3. Anderson K, Lutz C, van Delft FW et al (2011) Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469:356–361

    Article  CAS  PubMed  Google Scholar 

  4. Barrett JC, Hansoul S, Nicolae DL et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40:955–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bashashati A, Ha G, Tone A et al (2013) Distinct evolutionary trajectories of primary high-grade serous ovarian cancers revealed through spatial mutational profiling. J Pathol 231:21–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Benusiglio PR, Couvé S, Gilbert-Dussardier B et al (2015) A germline mutation in PBRM1 predisposes to renal cell carcinoma. J Med Genet 52(6):426–430

    Article  CAS  PubMed  Google Scholar 

  7. Biankin AV, Waddell N, Kassahn KS et al (2012) Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491:399–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Campbell PJ, Yachida S, Mudie LJ et al (2010) The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467:1109–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cao Q, Qin C, Ju X et al (2012) Chromosome 11q13.3 variant modifies renal cell cancer risk in a Chinese population. Mutagenesis 27(3):345–350

    Article  CAS  PubMed  Google Scholar 

  10. Cates JM, Dupont WD, Barnes JW et al (2008) Markers of epithelial-mesenchymal transition and epithelial differentiation in sarcomatoid carcinoma: utility in the differential diagnosis with sarcoma. Appl Immunohistochem Mol Morphol 16:251–262

    Article  PubMed  Google Scholar 

  11. Chen J, Huang D, Rubera I et al (2015) Disruption of tubular Flcn expression as a mouse model for renal tumor induction. Kidney Int 88(5):1057–1069

    Article  CAS  PubMed  Google Scholar 

  12. Choueiri TK, Vaishampayan UN, Rosenberg JE et al (2013) Phase II and biomarker study of the dual MET/VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. J Clin Oncol 31(2):181–186

    Article  CAS  PubMed  Google Scholar 

  13. Chudnovsky Y, Adams A, Robbins A, Lin Q, Khavari P (2005) Use of human tissue to assess the oncogenic activity of melanoma-associated mutations. Nat Genet 37:745–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Conant JL, Peng Z, Evans MF, Naud S, Cooper K (2011) Sarcomatoid renal cell carcinoma is an example of epithelial – mesenchymal transition. J Clin Pathol 64:1088–1092

    Article  PubMed  Google Scholar 

  15. Creighton CJ, Morgan M, Gunaratne PH et al (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499(7456):43–49

    Article  CAS  Google Scholar 

  16. da Costa WH, Rezende M, Carneiro FC et al (2014) Polybromo-1 (PBRM1), a SWI/SNF complex subunit is a prognostic marker in clear cell renal cell carcinoma. BJU Int 113(5b):E157–E163

    Article  PubMed  CAS  Google Scholar 

  17. Dalgliesh GL, Furge K, Greenman C et al (2010) Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463(7279):360–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davis CF, Ricketts CJ, Wang M et al (2014) The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell 26(3):319–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Delahunt B, Furge K, Greenman C et al (2001) Morphologic typing of papillary renal cell carcinoma: comparison of growth kinetics and patient survival in 66 cases. Hum Pathol 32(6):590

    Article  CAS  PubMed  Google Scholar 

  20. Furge KA, Chen J, Koeman J et al (2007) Detection of DNA copy number changes and oncogenic signaling abnormalities from gene expression data reveals MYC activation in high-grade papillary renal cell carcinoma. Cancer Res 67(7):3171–3176

    Article  CAS  PubMed  Google Scholar 

  21. Gad S, Lefèvre SH, Khoo SK et al (2007) Mutations in BHD and TP53 genes, but not in HNF1β gene, in a large series of sporadic chromophobe renal cell carcinoma. Br J Cancer 96:336–340

    Article  CAS  PubMed  Google Scholar 

  22. Gasparre G, Hervouet E, de Laplanche E et al (2008) Clonal expansion of mutated mitochondrial DNA is associated with tumor formation and complex I deficiency in the benign renal oncocytoma. Hum Mol Genet 17(7):986–995

    Article  CAS  PubMed  Google Scholar 

  23. Gerlinger M, Swanton C (2010) How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br J Cancer 103:1139–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gerlinger M, Horswell S, Larkin J et al (2014) Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet 46(3):225–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gillies RJ, Verduzco D, Gatenby RA (2012) Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nat Rev Cancer 12(7):487–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gnarra JR, Ward JM, Porter FD et al (1997) Defective placental vasculogenesis causes embryonic lethality in VHL-deficient mice. Proc Natl Acad Sci USA 94(17):9102–9107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Golshayan AR, George S, Heng DY et al (2009) Metastatic sarcomatoid renal cell carcinoma treated with vascular endothelial growth factor-targeted therapy. J Clin Oncol 27(2):235–241

    Article  PubMed  Google Scholar 

  29. Greaves M (2012) Maley CC Clonal evolution in cancer. Nature 481(7381):306–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gunawan B, von Heydebreck A, Fritsch T et al (2003) Cytogenetic and morphologic typing of 58 papillary renal cell carcinomas: evidence for a cytogenetic evolution of type 2 from type 1 tumors. Cancer Res 63(19):6200–6205

    CAS  PubMed  Google Scholar 

  31. Guo G, Gui Y, Gao S et al (2012) Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat Genet 44(1):17–19

    Article  CAS  Google Scholar 

  32. Hasumi Y, Baba M, Ajima R et al (2009) Homozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2. Proc Natl Acad Sci U S A 106:18722–18727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hasumi H, Baba M, Hasumi Y et al (2012) Regulation of mitochondrial oxidative metabolism by tumor suppressor FLCN. J Natl Cancer Inst 104:1750–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Heidenreich B, Rachakonda P, Hemminki K, Kumar R (2013) TERT promoter mutations in cancer development. Curr Opin Genet Dev 24:30–37

    Article  PubMed  CAS  Google Scholar 

  35. Hong SB, Oh H, Valera VA et al (2010a) Inactivation of the FLCN tumor suppressor gene induces TFE3 transcriptional activity by increasing its nuclear localization. PLoS One 5:e15793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hong SB, Oh H, Valera VA et al (2010b) Tumor suppressor FLCN inhibits tumorigenesis of a FLCN-null renal cancer cell line and regulates expression of key molecules in TGF-beta signaling. Mol Cancer 9:160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Horn S, Figl A, Rachakonda PS et al (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339:959–961

    Article  CAS  PubMed  Google Scholar 

  38. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA (2013) Highly recurrent TERT promoter mutations in human melanoma. Science 339:957–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Iqbal MA, Akhtar M, Ulmer C, Al-Dayel F, Paterson MC (2000) FISH analysis in chromophobe renal-cell carcinoma. Diagn Cytopathol 22(1):3–6

    Article  CAS  PubMed  Google Scholar 

  40. Isaacs JS, Jung YJ, Mole DR et al (2005) HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8:143–153

    Article  CAS  PubMed  Google Scholar 

  41. Janzen NK, Kim HL, Figlin RA, Belldegrun AS (2003) Surveillance after radical or partial nephrectomy for localized renal cell carcinoma and management of recurrent disease. Urol Clin North Am 30:843–852

    Article  PubMed  Google Scholar 

  42. Jiang F, Richter J, Schraml P et al (1998) Chromosomal imbalances in papillary renal cell carcinoma: genetic differences between histological subtypes. Am J Pathol 153(5):1467–1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jones S, Wang TL, IeM S et al (2010) Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330(6001):228–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kapur P, Peña-Llopis S, Christie A et al (2013) Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet Oncol 14(2):159–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kauffman EC, Ricketts CJ, Rais-Bahrami S et al (2014) Molecular genetics and cellular features of TFE3 and TFEB fusion kidney cancers. Nat Rev Urol 11:465–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Klatte T, Han KR, Said JW et al (2008) Pathobiology and prognosis of chromophobe renal cell carcinoma. Urol Oncol 26(6):604–609

    Article  PubMed  Google Scholar 

  47. Klatte T, Pantuck AJ, Said JW et al (2009) Cytogenetic and molecular tumor profiling for type 1 and type 2 papillary renal cell carcinoma. Clin Cancer Res 15(4):1162–1169

    Article  CAS  PubMed  Google Scholar 

  48. Klomp JA, Petillo D, Niemi NM et al (2010) Birt-Hogg-Dubé renal tumors are genetically distinct from other renal neoplasias and are associated with up-regulation of mitochondrial gene expression. BMC Med Genet 3:59

    CAS  Google Scholar 

  49. Kondo K, Klco J, Nakamura E et al (2002) Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 1:237–246

    Article  CAS  PubMed  Google Scholar 

  50. Kondo K, Kim WY, Lechpammer M et al (2003) Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth. PLoS Biol 1:E83

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kovac M, Navas C, Horswell S et al (2015) Recurrent chromosomal gains and heterogeneous driver mutations characterise papillary renal cancer evolution. Nat Commun 6:6336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kovacs A, Storkel S, Thoenes W, Kovacs G (1992) Mitochondrial and chromosomal DNA alterations in human chromophobe renal cell carcinomas. J Pathol 167(3):273–277

    Article  CAS  PubMed  Google Scholar 

  53. Kuroda N, Toi M, Hiroi M, Enzan H (2003) Review of chromophobe renal cell carcinoma with focus on clinical and pathobiological aspects. Histol Histopathol 18(1):165–171

    CAS  PubMed  Google Scholar 

  54. Kuroiwa K, Konomoto T, Kumazawa J, Naito S, Tsuneyoshi M (2001) Cell proliferative activity and expression of cell-cell adhesion factors (E-cadherin, alpha-, beta-, and gamma-catenin, and p 120) in sarcomatoid renal cell carcinoma. J Surg Oncol 77:123–131

    Article  CAS  PubMed  Google Scholar 

  55. Latham B, Dickersin GR, Oliva E (1999) Subtypes of chromophobe cell renal carcinoma: an ultrastructural and histochemical study of 13 cases. Am J Surg Pathol 23(5):530–535

    Article  CAS  PubMed  Google Scholar 

  56. Lehtonen HJ, Kiuru M, Ylisaukko-Oja SK et al (2006) Increased risk of cancer in patients with fumarate hydratase germline mutation. J Med Genet 43(6):523–526

    Article  CAS  PubMed  Google Scholar 

  57. Lichner Z, Mejia-Guerrero S, Ignacak M et al (2012) Pleiotropic action of renal cell carcinoma-dysregulated miRNAs on hypoxia-related signaling pathways. Am J Pathol 180(4):1675–1687

    Article  CAS  PubMed  Google Scholar 

  58. Lichner Z, Scorilas A, White NM et al (2013) The chromatin remodeling gene ARID1A is a new prognostic marker in clear cell renal cell carcinoma. Am J Pathol 182(4):1163–1170

    Article  CAS  PubMed  Google Scholar 

  59. Li Y, Zhang ZF, Chen J et al (2010) VX680/MK-0457, a potent and selective Aurora kinase inhibitor, targets both tumor and endothelial cells in clear cell renal cell carcinoma. Am J Transl Res 2(3):296–308

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Li Y, Zhou W, Wei L et al (2012) the effect of Aurora kinase on cell proliferation, cell cycle regulation and metastasis in renal cell carcinoma. Int J Oncol 41(6):2139–2149

    PubMed  Google Scholar 

  61. Linehan WM, Spellman PT, Ricketts CJ et al (2016) Comprehensive molecular characterization of papillary renal-cell carcinoma. N Engl J Med 374(2):135–145

    Article  PubMed  CAS  Google Scholar 

  62. Looyenga BD, Furge KA, Dykema KJ et al (2011) Chromosomal amplification of leucine-rich repeat kinase-2 (LRRK2) is required for oncogenic MET signaling in papillary renal and thyroid carcinomas. Proc Natl Acad Sci USA 108(4):1439–1444

    Article  PubMed  PubMed Central  Google Scholar 

  63. Maestro ML, del Barco V, Sanz-Casla MT et al (2000) Loss of heterozygosity on the short arm of chromosome 3 in renal cancer. Oncology 59:126–130

    Article  CAS  PubMed  Google Scholar 

  64. Mandriota SJ, Turner KJ, Davies DR et al (2002) HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 1(5):459–468

    Article  CAS  PubMed  Google Scholar 

  65. Marusyk A, Almendro V, Polyyak K (2012) Intratumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 12:323–334

    Article  CAS  PubMed  Google Scholar 

  66. Mayr JA, Meierhofer D, Zimmermann F et al (2008) Loss of complex I due to mitochondrial DNA mutations in renal oncocytoma. Clin Cancer Res 14(8):2270–2275

    Article  CAS  PubMed  Google Scholar 

  67. Misaghi S, Ottosen S, Izrael-Tomasevic A et al (2009) Association of C-terminal ubiquitin hydrolase BRCA1-associated protein 1 with cell cycle regulator host cell factor 1. Mol Cell Biol 29(8):2181–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Motzer RJ, Bander NH, Nanus DM et al (1996) Renal-cell carcinoma. N Engl J Med 335:865–875

    Article  CAS  PubMed  Google Scholar 

  69. Nagashima Y (2000) Chromophobe renal cell carcinoma: clinical, pathological and molecular biological aspects. Pathol Int 50(11):872–878

    Article  CAS  PubMed  Google Scholar 

  70. Navin N, Kendall J, Troge J et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472:90–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Niu X, Zhang T, Liao L et al (2012) The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C. Oncogene 31(6):776–786

    Article  CAS  PubMed  Google Scholar 

  72. Ooi A, Wong JC, Petillo D et al (2011) An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell 20:511–523

    Article  CAS  PubMed  Google Scholar 

  73. Ooi A, Dykema K, Ansari A et al (2013) CUL3 and NRF2 mutations confer an NRF2 activation phenotype in a sporadic form of papillary renal cell carcinoma. Cancer Res 73(7):2044–2051

    Article  CAS  PubMed  Google Scholar 

  74. Pal SK, He M, Tong T et al (2015) RNA-seq reveals aurora kinase driven-mTOR pathway activation in patients with sarcomatoid metastatic renal cell carcinoma. Mol Cancer Res 13(1):130–137

    Article  CAS  PubMed  Google Scholar 

  75. Parmigiani G, Boca S, Lin J, Kinzler KW, Velculescu V, Vogelstein B (2009) Design and analysis issues in genome-wide somatic mutation studies of cancer. Genomics 93(1):17–21

    Article  CAS  PubMed  Google Scholar 

  76. Peña-Llopis S, Vega-Rubín-de-Celis S, Liao A et al (2012) BAP1 loss defines a new class of renal cell carcinoma. Nat Genet 44(7):751–759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Petit CS, Roczniak-Ferguson A, Ferguson SM (2013) Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases. J Cell Biol 202:1107–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pignot G, Elie C, Conquy S et al (2007) Survival analysis of 130 patients with papillary renal cell carcinoma: prognostic utility of type 1 and type 2 subclassification. Urology 69(2):230–235

    Article  PubMed  Google Scholar 

  79. Polascik TJ, Bostwick DG, Cairns P (2002) Molecular genetics and histopathologic features of adult distal nephron tumors. Urology 60(6):941–946

    Article  PubMed  Google Scholar 

  80. Popova T, Hebert L, Jacquemin V et al (2013) Germline BAP1 mutations predispose to renal cell carcinomas. Am J Hum Genet 92(6):974–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Purdue MP, Johansson M, Zelenika D et al (2011) Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat Genet 43(1):60–65

    Article  CAS  PubMed  Google Scholar 

  82. Rafnar T, Sulem P, Stacey S et al (2009) Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat Genet 41:221–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Raval RR, Lau KW, Tran MG et al (2005) Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 25:5675–5686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Refae MA, Wong N, Patenaude F et al (2007) Hereditary leiomyomatosis and renal cell cancer: an unusual and aggressive form of hereditary renal carcinoma. Nat Clin Pract Oncol 4(4):256–261

    Article  CAS  PubMed  Google Scholar 

  85. Reisman D, Glaros S, Thompson EA (2009) The SWI/SNF complex and cancer. Oncogene 28:1653–1668

    Article  CAS  PubMed  Google Scholar 

  86. Renshaw AA, Richie JP (1999) Subtypes of renal cell carcinoma. Different onset and sites of metastatic disease. Am J Clin Pathol 111(4):539–543

    Article  CAS  PubMed  Google Scholar 

  87. Ross JS, Wang K, Elkadi OR et al (2014) Next-generation sequencing reveals frequent consistent genomic alterations in small cell undifferentiated lung cancer. J Clin Pathol 67:772–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sato Y, Yoshizato T, Shiraishi Y et al (2013) Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet 45:860–867

    Article  CAS  PubMed  Google Scholar 

  89. Scheuermann JC, de Ayala Alonso AG, Oktaba K et al (2010) Histone H2A deubiquitinase activity of the polycomb repressive complex PR-DUB. Nature 465(7295):243–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schmidt L, Duh FM, Chen F et al (1997) Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 16(1):68–73

    Article  CAS  PubMed  Google Scholar 

  91. Schmidt L, Junker K, Nakaigawa N et al (1999) Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene 18(14):2343–2350

    Article  CAS  PubMed  Google Scholar 

  92. Schödel J, Bardella C, Sciesielski LK et al (2012) Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of HIF to an enhancer of cyclin D1 expression. Nat Genet 44:420–425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Schuetz AN, Yin-Goen Q, Amin MB et al (2005) Molecular classification of renal tumors by gene expression profiling. J Mol Diagn 7(2):206–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shen C, Beroukhim R, Schumacher SE et al (2011) Genetic and functional studies implicate HIF1a as a 14q kidney cancer suppressor gene. Cancer Discov 1:222–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30

    Article  PubMed  Google Scholar 

  96. Simon JM, Hacker KE, Singh D et al (2014) Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects. Genome Res 24(2):241–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Simonnet H, Demont J, Pfeiffer K et al (2003 Sep) Mitochondrial complex I is deficient in renal oncocytomas. Carcinogenesis 24(9):1461–1466

    Article  CAS  PubMed  Google Scholar 

  98. Sottoriva A, Spiteri I, Piccirillo SG et al (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA 110:4009–4014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Staller P, Sulitkova J, Lisztwan J et al (2003) Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 425(6955):307–311

    Article  CAS  PubMed  Google Scholar 

  100. Su T, Han Y, Yu Y et al (2013) A GWAS-identified susceptibility locus on chromosome 11q13.3 and its putative molecular target for prediction of postoperative prognosis of human renal cell carcinoma. Oncol Lett 6(2):421–426

    PubMed  PubMed Central  Google Scholar 

  101. Teh BT, Giraud S, Sari NF et al (1997) Familial non-VHL non-papillary clear-cell renal cancer. Lancet 349:848–849

    Article  CAS  PubMed  Google Scholar 

  102. Thirlwell C, Will OC, Domingo E et al (2010) Clonality assessment and clonal ordering of individual neoplastic crypts shows polyclonality of colorectal adenomas. Gastroenterology 138:1441–1454

    Article  CAS  PubMed  Google Scholar 

  103. Thoenes W, Störkel S, Rumpelt HJ et al (1988) Chromophobe cell renal carcinoma and its variants – a report on 32 cases. J Pathol 155(4):277–287

    Article  CAS  PubMed  Google Scholar 

  104. Tomlinson IP, Alam NA, Rowan AJ et al (2002) Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 30(4):406–410

    Article  CAS  PubMed  Google Scholar 

  105. Tong WH, Sourbier C, Kovtunovych G et al (2011) The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases anabolic propensities and lowers cellular iron levels. Cancer Cell 20:315–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Toro JR, Glenn G, Duray P et al (1999) Birt-Hogg-Dubé syndrome: a novel marker of kidney neoplasia. Arch Dermatol 135:1195–1202

    CAS  PubMed  Google Scholar 

  107. Toro JR, Nickerson ML, Wei MH et al (2003) Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am J Hum Genet 73(1):95–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Toyota M, Ahuja N, Ohe-Toyota M et al (1999) CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A 96:8681–8686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tyagi S, AL C, Wysocka J, Herr W (2007) E2F activation of S phase promoters via association with HCF-1 and the MLL family of histone H3K4 methyltransferases. Mol Cell 27(1):107–119

    Article  CAS  PubMed  Google Scholar 

  110. van Haaften G, Dalgliesh GL, Davies H et al (2009) Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet 41(5):521–523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Vanharanta S, Shu W, Brenet F et al (2013) Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer. Nat Med 19(1):50–56

    Article  CAS  PubMed  Google Scholar 

  112. Varela I, Tarpey P, Raine K et al (2011) Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469(7331):539–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Voss MH, Bastos DA, Karlo CA et al (2014) Treatment outcome with mTOR inhibitors for metastatic renal cell carcinoma with nonclear and sarcomatoid histologies. Ann Oncol 25:663–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Waldert M, Haitel A, Marberger M et al (2008) Comparison of type I and II papillary renal cell carcinoma (RCC) and clear cell RCC. BJU Int 102(10):1381–1384

    PubMed  Google Scholar 

  115. Wang SS, Gu YF, Wolff N et al (2014) Bap1 is essential for kidney function and cooperates with Vhl in renal tumorigenesis. Proc Natl Acad Sci U S A 111(46):16538–16543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Weir B, Woo M, Getz G et al (2007) Characterizing the cancer genome in lung adenocarcinoma. Nature 450:893–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wiegand KC, Shah SP, Al-Agha OM et al (2010) ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med 363(16):1532–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wu JI, Lessard J, Crabtree GR (2009) Understanding the words of chromatin regulation. Cell 136(2):200–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wu M, Si S, Li Y et al (2015) Flcn-deficient renal cells are tumorigenic and sensitive to mTOR suppression. Oncotarget 6(32):32761–32773

    PubMed  PubMed Central  Google Scholar 

  120. Yang XJ, Tan MH, Kim HL et al (2005) A molecular classification of papillary renal cell carcinoma. Cancer Res 65(13):5628–5637

    Article  CAS  PubMed  Google Scholar 

  121. Yang Y, Lane AN, Ricketts CJ et al (2013) Metabolic reprogramming for producing energy and reducing power in fumarate hydratase null cells from hereditary leiomyomatosis renal cell carcinoma. PLoS One 8(8):e72179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yap TA, Gerlinger M, Futreal PA, Pusztai L, Swanton C (2012) Intratumor heterogeneity: Seeing the wood for the trees. Sci Transl Med 4(127):127ps10

    Article  PubMed  CAS  Google Scholar 

  123. Young AP, Schlisio S, Minamishima YA et al (2008) VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nat Cell Biol 10:361–369

    Article  CAS  PubMed  Google Scholar 

  124. Zang ZJ, Cutcutache I, SL P et al (2012) Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet 44:570–574

    Article  CAS  PubMed  Google Scholar 

  125. Zhang FR, Huang W, Chen SM et al (2009) Genomewide association study of leprosy. N Engl J Med 361:2609–2618

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoya Fukawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Fukawa, T. et al. (2017). Molecular Genetics of Renal Cell Carcinoma. In: Oya, M. (eds) Renal Cell Carcinoma. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55531-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55531-5_3

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55530-8

  • Online ISBN: 978-4-431-55531-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics