Skip to main content

Optimization of Therapy by Pharmacokinetic–Pharmacodynamic Analyses

  • Chapter
  • First Online:
Renal Cell Carcinoma
  • 995 Accesses

Abstract

In cytotoxic anticancer agents, efficacy depends on tumor heterogeneity and is not evaluated immediately after administration, and toxicities are severe and life threatening such as neutropenia and thrombocytopenia. Therefore because toxicity is often more readily measured than efficacy, there are more reported pharmacodynamic (PD) studies defining relationships between pharmacokinetic (PK) parameters and the toxicity. However, retrospective studies have shown that molecular targeted agent systemic exposure correlates with treatment response (efficacy and toxicity) in various cancers including renal cell carcinoma (RCC). The evidence of the relationship between PK and PD for imatinib currently exists in the treatment of leukemia and gastrointestinal stromal tumor (GIST). It is important to evaluate the relationship between PK and PD prospectively in clinical trials rather than extrapolating from retrospective analyses. Based on these findings, therapeutic levels should be defined for molecular targeted agents in the treatment of RCC such as that that already occurs for antiepileptic, immunosuppressive, and antibiotic agents. Optimization of systemic exposure by dose modification to eliminate individual variability can increase the probability of efficacy, decrease the probability of toxicity, or both in each RCC patient treated with molecular targeted agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Boudou-Rouquette P, Narjoz C, Golmard JL et al (2012) Early sorafenib-induced toxicity is associated with drug exposure and UGTIA9 genetic polymorphism in patients with solid tumors: a preliminary study. PLoS One 7:e42875. doi:10.1371/journal.pone.0042875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jain L, Woo S, Gardner ER et al (2011) Population pharmacokinetic analysis of sorafenib in patients with solid tumours. Br J Clin Pharmacol 72:294–305. doi:10.1111/j.1365-2125.2011.03963.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. European Medicines Agency (2007) Nexavar: EPAR – scientific discussion. Available from: http://www.ema.europa.eu. Accessed 5 Oct 2012

  4. Houk BE, Bello CL, Kang D et al (2009) Population pharmacokinetic meta-analysis of sunitinib malate (SU11248) and its primary metabolite (SU12662) in healthy volunteers and oncology patients. Clin Cancer Res 15:2497–2506. doi:10.1158/1078-0432

    Article  CAS  PubMed  Google Scholar 

  5. Mizuno T, Fukudo M, Fukuda T et al (2014) The effect of ABCG2 genotype on the population pharmacokinetics of sunitinib in patients with renal cell carcinoma. Ther Drug Monit 36:310–316. doi:10.1097/FTD.0000000000000025

    Article  CAS  PubMed  Google Scholar 

  6. HoukBello CL, Poland B, Rosen LS et al (2010) Relationship between exposure to sunitinib and efficacy and tolerability endpoints in patients with cancer: results of a pharmacokinetic/pharmacodynamic meta analysis. Cancer Chemother Pharmacol 66:357–371. doi:10.1007/s00280-009-1170-y

    Article  Google Scholar 

  7. Imai Y, Nakane M, Kage K et al (2002) C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. Mol Cancer Ther 1:611–616

    CAS  PubMed  Google Scholar 

  8. Kim KA, Joo HJ, Park JY (2010) ABCG2 polymorphisms, 34G>A and 421C>A in a Korean population: analysis and a comprehensive comparison with other populations. J Clin Pharm Ther 35(6):705–712. doi:10.1111/j.1365-2710.2009.01127.x

    Article  PubMed  Google Scholar 

  9. de Jong FA, Marsh S, Mathijssen RH et al (2004) ABCG2 pharmacogenetics: ethnic differences in allele frequency and assessment of influence on irinotecan disposition. Clin Cancer Res 10:5889–5894

    Article  PubMed  Google Scholar 

  10. Tomita Y, Shinohara M, Yuasa T et al (2010) Overall survival and updated results from a phase II study of sunitinib in Japanese patients with metastatic renal cell carcinoma. Jpn J Clin Oncol 40:1166–1172. doi:10.1093/jjco/hyq146

    Article  PubMed  Google Scholar 

  11. Kim HS, Hong MH, Kim K et al (2011) Sunitinib for Asian patients with advanced renal cell carcinoma: a comparable efficacy with different toxicity profiles. Oncology 80:395–405. doi:10.1159/000330361

    Article  CAS  PubMed  Google Scholar 

  12. Motzer RJ, Hutson TE, Tomczak P et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115–124

    Article  CAS  PubMed  Google Scholar 

  13. Brennan M, Williams JA, Chen Y et al (2012) Mete-analysis of contribution of genetic polymorphisms in drug-metabolizing enzymes or transporters to axitinib pharmacokinetics. Eur J Clin Pharmacol 68:645–655. doi:10.1007/s00228-011-1171-8

    Article  CAS  PubMed  Google Scholar 

  14. Garrett M, Poland B, Brennan M et al (2014) Population pharmacokinetic analysis of axitinib in healthy volunteers. Br J Clin Pharmacol 77:480–492. doi:10.1111/bcp.12206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rini BI, Gaeertt M, Poland B et al (2013) Axitinib in metastatic renal cell carcinoma: results of a pharmacokinetic and pharmacodynamic analysis. J Clin Pharmacol 53:491–504. doi:10.1002/jcph.73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heath EI, Chiorean EG, Sweeney CJ et al (2010) A phase I study of the pharmacokinetic and safety profiles of oral pazopanib with a high-fat or low-fat meal in patients with advanced solid tumors. Clin Pharmacol Ther 88:818–823. doi:10.1038/clpt.2010.199

    Article  CAS  PubMed  Google Scholar 

  17. Kumar R, Knick VB, Rudolph SK et al (2007) Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol Cancer Ther 6:2012–2021

    Article  CAS  PubMed  Google Scholar 

  18. Suttle AB, Ball HA, Molimard M et al (2014) Relationships between pazopanib exposure and clinical safety and efficacy in patients with advanced renal cell carcinoma. Br J Cancer 111:1909–1916. doi:10.1038/bjc.2014.503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moes DJ, Press RR, den Hartigh J et al (2012) Population pharmacokinetics and pharmacogenetics of everolimus in renal transplant patients. Clin Pharmacokinet 51:467–480. doi:10.2165/11599710-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  20. Lemaitre F, Bezian E, Goldwirt L et al (2012) Population pharmacokinetics of everolimus in cardiac recipients: comedications, ABCB1, and CYP3A5 polymorphisms. Ther Drug Monit 34:686–694. doi:10.1097/FTD.0b013e318273c899

    Article  CAS  PubMed  Google Scholar 

  21. Tabernero J, Rojo F, Calvo E et al (2008) Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol 26:1603–1610. doi:10.1200/JCO.2007.14.5482

    Article  CAS  PubMed  Google Scholar 

  22. Ravaud A, Urva SR, Grosch K et al (2014) Relationship between everolimus exposure and safety and efficacy: meta-analysis of clinical trials in oncology. Eur J Cancer 50:486–495. doi:10.1016/j.ejca.2013.11.022. Epub 2013 Dec 9

  23. Thiery-Vuillemin A, Mouillet G, Nguyen Tan Hon T et al (2014) Impact of everolimus blood concentration on its anti-cancer activity in patients with metastatic renal cell carcinoma. Cancer Chemother Pharmacol 73:999–1007. doi:10.1007/s00280-014-2435-7

    Article  CAS  PubMed  Google Scholar 

  24. Ferté C, Paci A, Zizi M et al (2011) Natural history, management and pharmacokinetics of everolimus-induced-oral ulcers: insights into compliance issues. Eur J Cancer 47:2249–2255. doi:10.1016/j.ejca.2011.03.017

    Article  PubMed  Google Scholar 

  25. Boni JP, Leister C, Bender G et al (2005) Population pharmacokinetics of CCI-779: correlations to safety and pharmacogenomic responses in patients with advanced renal cancer. Clin Pharmacol Ther 77:76–89

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiyo K. Imamura Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Imamura, C.K. (2017). Optimization of Therapy by Pharmacokinetic–Pharmacodynamic Analyses. In: Oya, M. (eds) Renal Cell Carcinoma. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55531-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55531-5_16

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55530-8

  • Online ISBN: 978-4-431-55531-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics