Skip to main content

Immunotherapy for Renal Cell Cancer (RCC)

  • Chapter
  • First Online:
Book cover Renal Cell Carcinoma

Abstract

It is estimated that approximately 30–40 % of patients are diagnosed in the advanced stage and require systemic therapy. However, clinical development of cytotoxic chemotherapies for RCC has failed for many years. Historically, investigators have focused on the immunogenicity of RCC. Because many types of tumor-infiltrating lymphocytes (TILs) were frequently observed in tissue sections, in rare cases spontaneous tumor regression was experienced. Based on these observations, clinical development of immunotherapies has been attempted. This chapter introduces the history of clinical development of the conventional immunotherapies, including cytokine- and vaccine-based approaches, and then, does the novel immunotherapies, ‘immune checkpoint inhibitors’ as an emerging option for advanced RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Znaor A, Lortet-Tieulent J, Laversanne M, Jemal A, Bray F (2015) International variations and trends in renal cell carcinoma incidence and mortality. Eur Urol 67:519–530

    Article  PubMed  Google Scholar 

  2. Kane CJ, Mallin K, Ritchey J, Cooperberg MR, Carroll PR (2008) Renal cell cancer stage migration: analysis of the National Cancer Data Base. Cancer 113:78–83

    Article  PubMed  Google Scholar 

  3. Yagoda A, Petrylak D, Thompson S (1993) Cytotoxic chemotherapy for advanced renal cell carcinoma. Urol Clin North Am 20:303–321

    CAS  PubMed  Google Scholar 

  4. Biswas S, Eisen T (2009) Immunotherapeutic strategies in kidney cancer--when TKIs are not enough. Nat Rev Clin Oncol 6:478–487

    Article  CAS  PubMed  Google Scholar 

  5. McDermott DF (2009) Immunotherapy of metastatic renal cell carcinoma. Cancer 115:2298–2305

    Article  CAS  PubMed  Google Scholar 

  6. McDermott DF, Regan MM, Clark JI, Flaherty LE, Weiss GR et al (2005) Randomized phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. J Clin Oncol 23:133–141

    Article  CAS  PubMed  Google Scholar 

  7. Escudier B, Pluzanska A, Koralewski P, Ravaud A, Bracarda S et al (2007) Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370:2103–2111

    Article  PubMed  Google Scholar 

  8. Rini BI, Halabi S, Rosenberg JE, Stadler WM, Vaena DA et al (2008) Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. J Clin Oncol 26:5422–5428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R et al (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356:2271–2281

    Article  CAS  PubMed  Google Scholar 

  10. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115–124

    Article  CAS  PubMed  Google Scholar 

  11. Coppin C, Kollmannsberger C, Le L, Porzsolt F, Wilt TJ (2011) Targeted therapy for advanced renal cell cancer (RCC): a Cochrane systematic review of published randomised trials. BJU Int 108:1556–1563

    Article  CAS  PubMed  Google Scholar 

  12. Motzer RJ, Hutson TE, Cella D, Reeves J, Hawkins R et al (2013) Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med 369:722–731

    Article  CAS  PubMed  Google Scholar 

  13. Escudier B, Porta C, Schmidinger M, Algaba F, Patard JJ, et al. (2014) Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 25 Suppl 3: iii49–iii56.

    Google Scholar 

  14. Vaishampayan U, Vankayala H, Vigneau FD, Quarshie W, Dickow B et al (2014) The effect of targeted therapy on overall survival in advanced renal cancer: a study of the national surveillance epidemiology and end results registry database. Clin Genitourin Cancer 12:124–129

    Article  PubMed  Google Scholar 

  15. Zhou L, Liu XD, Sun M, Zhang X, German P, et al. (2015) Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma. Oncogene.

    Google Scholar 

  16. Choueiri TK, Escudier B, Powles T, Mainwaring PN, Rini BI et al (2015) Cabozantinib versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373:1814–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE et al (1985) Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 313:1485–1492

    Article  CAS  PubMed  Google Scholar 

  18. Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP et al (1987) A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med 316:889–897

    Article  CAS  PubMed  Google Scholar 

  19. Fyfe G, Fisher RI, Rosenberg SA, Sznol M, Parkinson DR et al (1995) Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J Clin Oncol 13:688–696

    CAS  PubMed  Google Scholar 

  20. Coppin C, Porzsolt F, Awa A, Kumpf J, Coldman A et al (2005) Immunotherapy for advanced renal cell cancer. Cochrane Database Syst Rev 25:Cd001425

    Google Scholar 

  21. Rosenberg SA (2014) IL-2: the first effective immunotherapy for human cancer. J Immunol 192:5451–5458

    Article  CAS  PubMed  Google Scholar 

  22. Medical Research Council (1999) Interferon-alpha and survival in metastatic renal carcinoma: early results of a randomised controlled trial. Medical Research Council Renal Cancer Collaborators. Lancet 353:14–17

    Article  Google Scholar 

  23. Pyrhonen S, Salminen E, Ruutu M, Lehtonen T, Nurmi M et al (1999) Prospective randomized trial of interferon alfa-2a plus vinblastine versus vinblastine alone in patients with advanced renal cell cancer. J Clin Oncol 17:2859–2867

    CAS  PubMed  Google Scholar 

  24. Gleave ME, Elhilali M, Fradet Y, Davis I, Venner P et al (1998) Interferon gamma-1b compared with placebo in metastatic renal-cell carcinoma. Canadian Urologic Oncology Group. N Engl J Med 338:1265–1271

    Article  CAS  PubMed  Google Scholar 

  25. Schwartzentruber DJ, Lawson DH, Richards JM, Conry RM, Miller DM et al (2011) gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med 364:2119–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL et al (2010) Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 28:1099–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A et al (2012) Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 18:1254–1261

    Article  CAS  PubMed  Google Scholar 

  28. Jocham D, Richter A, Hoffmann L, Iwig K, Fahlenkamp D et al (2004) Adjuvant autologous renal tumour cell vaccine and risk of tumour progression in patients with renal-cell carcinoma after radical nephrectomy: phase III, randomised controlled trial. Lancet 363:594–599

    Article  CAS  PubMed  Google Scholar 

  29. Southall PJ, Boxer GM, Bagshawe KD, Hole N, Bromley M et al (1990) Immunohistological distribution of 5 T4 antigen in normal and malignant tissues. Br J Cancer 61:89–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Amato RJ, Hawkins RE, Kaufman HL, Thompson JA, Tomczak P et al (2010) Vaccination of metastatic renal cancer patients with MVA-5 T4: a randomized, double-blind, placebo-controlled phase III study. Clin Cancer Res 16:5539–5547

    Article  CAS  PubMed  Google Scholar 

  31. Wood C, Srivastava P, Bukowski R, Lacombe L, Gorelov AI et al (2008) An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicentre, open-label, randomised phase III trial. Lancet 372:145–154

    Article  CAS  PubMed  Google Scholar 

  32. Aubert S, Fauquette V, Hemon B, Lepoivre R, Briez N et al (2009) MUC1, a new hypoxia inducible factor target gene, is an actor in clear renal cell carcinoma tumor progression. Cancer Res 69:5707–5715

    Article  CAS  PubMed  Google Scholar 

  33. Oudard S, Rixe O, Beuselinck B, Linassier C, Banu E et al (2011) A phase II study of the cancer vaccine TG4010 alone and in combination with cytokines in patients with metastatic renal clear-cell carcinoma: clinical and immunological findings. Cancer Immunol Immunother 60:261–271

    Article  CAS  PubMed  Google Scholar 

  34. Amin A, Dudek AZ, Logan TF, Lance RS, Holzbeierlein JM et al (2015) Survival with AGS-003, an autologous dendritic cell-based immunotherapy, in combination with sunitinib in unfavorable risk patients with advanced renal cell carcinoma (RCC): Phase 2 study results. J Immunother Cancer 3:14

    Article  PubMed  PubMed Central  Google Scholar 

  35. Draube A, Klein-Gonzalez N, Mattheus S, Brillant C, Hellmich M et al (2011) Dendritic cell based tumor vaccination in prostate and renal cell cancer: a systematic review and meta-analysis. PLoS One 6:e18801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480:480–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348:56–61

    Article  CAS  PubMed  Google Scholar 

  38. Postow MA, Callahan MK, Wolchok JD (2015) Immune checkpoint blockade in cancer therapy. J Clin Oncol 33:1974–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen L (2004) Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol 4:336–347

    Article  CAS  PubMed  Google Scholar 

  41. Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    Article  CAS  PubMed  Google Scholar 

  42. Drake CG, Jaffee E, Pardoll DM (2006) Mechanisms of immune evasion by tumors. Adv Immunol 90:51–81

    Article  CAS  PubMed  Google Scholar 

  43. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Robert C, Thomas L, Bondarenko I, O’Day S, Weber J et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526

    Article  CAS  PubMed  Google Scholar 

  45. Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K et al (2015) Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 33:1889–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McDermott D, Haanen J, Chen TT, Lorigan P, O’Day S (2013) Efficacy and safety of ipilimumab in metastatic melanoma patients surviving more than 2 years following treatment in a phase III trial (MDX010-20). Ann Oncol 24:2694–2698

    Article  CAS  PubMed  Google Scholar 

  47. Mahoney KM, Rennert PD, Freeman GJ (2015) Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 14:561–584

    Article  CAS  PubMed  Google Scholar 

  48. Melero I, Berman DM, Aznar MA, Korman AJ, Perez Gracia JL et al (2015) Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat Rev Cancer 15:457–472

    Article  CAS  PubMed  Google Scholar 

  49. Zamarin D, Postow MA (2015) Immune checkpoint modulation: rational design of combination strategies. Pharmacol Ther 150:23–32

    Article  CAS  PubMed  Google Scholar 

  50. Rudd CE, Taylor A, Schneider H (2009) CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev 229:12–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nirschl CJ, Drake CG (2013) Molecular pathways: coexpression of immune checkpoint molecules: signaling pathways and implications for cancer immunotherapy. Clin Cancer Res 19:4917–4924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stewart R, Hammond SA, Oberst M, Wilkinson RW (2014) The role of Fc gamma receptors in the activity of immunomodulatory antibodies for cancer. J ImmunoTher Cancer 2:1–10

    Article  Google Scholar 

  53. Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K et al (2013) Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med 210:1695–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang JC, Hughes M, Kammula U, Royal R, Sherry RM et al (2007) Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J Immunother 30:825–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ishida Y, Agata Y, Shibahara K, Honjo T (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11:3887–3895

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Keir ME, Francisco LM, Sharpe AH (2007) PD-1 and its ligands in T-cell immunity. Curr Opin Immunol 19:309–314

    Article  CAS  PubMed  Google Scholar 

  57. Thompson RH, Dong H, Kwon ED (2007) Implications of B7-H1 expression in clear cell carcinoma of the kidney for prognostication and therapy. Clin Cancer Res 13: 709 s–715 s.

    Google Scholar 

  58. Jilaveanu LB, Shuch B, Zito CR, Parisi F, Barr M et al (2014) PD-L1 Expression in Clear Cell Renal Cell Carcinoma: An Analysis of Nephrectomy and Sites of Metastases. J Cancer 5:166–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Choueiri TK, Fay AP, Gray KP, Callea M, Ho TH et al (2014) PD-L1 expression in nonclear-cell renal cell carcinoma. Ann Oncol 25:2178–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zou W, Chen L (2008) Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 8:467–477

    Article  CAS  PubMed  Google Scholar 

  61. Thompson RH, Kuntz SM, Leibovich BC, Dong H, Lohse CM et al (2006) Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res 66:3381–3385

    Article  CAS  PubMed  Google Scholar 

  62. Kang MJ, Kim KM, Bae JS, Park HS, Lee H et al (2013) Tumor-infiltrating PD1-positive lymphocytes and foxP3-positive regulatory T cells predict distant metastatic relapse and survival of clear cell renal cell carcinoma. Transl Oncol 6:282–289

    Article  PubMed  PubMed Central  Google Scholar 

  63. Topalian SL, Drake CG, Pardoll DM (2012) Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 24:207–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J et al (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28:3167–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lipson EJ, Sharfman WH, Drake CG, Wollner I, Taube JM et al (2013) Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin Cancer Res 19:462–468

    Article  CAS  PubMed  Google Scholar 

  66. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366

    Google Scholar 

  67. McDermott DF, Drake CG, Sznol M, Choueiri TK, Powderly JD et al (2015) Survival, durable response, and long-term safety in patients with previously treated advanced renal cell carcinoma receiving nivolumab. J Clin Oncol 33:2013–2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Motzer RJ, Rini BI, McDermott DF, Redman BG, Kuzel TM et al (2015) Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J Clin Oncol 33:1430–1437

    Article  CAS  PubMed  Google Scholar 

  69. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373:1803–1813

    Article  CAS  PubMed  Google Scholar 

  70. Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O et al (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 15:7412–7420

    Article  CAS  PubMed  Google Scholar 

  71. Nishino M, Giobbie-Hurder A, Gargano M, Suda M, Ramaiya NH et al (2013) Developing a common language for tumor response to immunotherapy: immune-related response criteria using unidimensional measurements. Clin Cancer Res 19:3936–3943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen DS, Irving BA, Hodi FS (2012) Molecular pathways: next-generation immunotherapy – inhibiting programmed death-ligand 1 and programmed death-1. Clin Cancer Res 18:6580–6587

    Article  CAS  PubMed  Google Scholar 

  73. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y et al (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515:558–562

    Article  CAS  PubMed  Google Scholar 

  75. McDermott DF, Sosman JA, Sznol M, Massard C, Gordon MS, et al. (2016) Atezolizumab, an anti-programmed death-ligand 1 antibody, in metastatic renal cell carcinoma: long-term safety, clinical activity, and immune correlates from a phase Ia study. J Clin Oncol.

    Google Scholar 

  76. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rini BI, Stein M, Shannon P, Eddy S, Tyler A et al (2011) Phase 1 dose-escalation trial of tremelimumab plus sunitinib in patients with metastatic renal cell carcinoma. Cancer 117:758–767

    Article  CAS  PubMed  Google Scholar 

  78. Ko JS, Zea AH, Rini BI, Ireland JL, Elson P et al (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15:2148–2157

    Article  CAS  PubMed  Google Scholar 

  79. Ko JS, Rayman P, Ireland J, Swaidani S, Li G et al (2010) Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res 70:3526–3536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Adotevi O, Pere H, Ravel P, Haicheur N, Badoual C et al (2010) A decrease of regulatory T cells correlates with overall survival after sunitinib-based antiangiogenic therapy in metastatic renal cancer patients. J Immunother 33:991–998

    Article  CAS  PubMed  Google Scholar 

  81. Desar IM, Jacobs JH, Hulsbergen-vandeKaa CA, Oyen WJ, Mulders PF et al (2011) Sorafenib reduces the percentage of tumour infiltrating regulatory T cells in renal cell carcinoma patients. Int J Cancer 129:507–512

    Article  CAS  PubMed  Google Scholar 

  82. Liu XD, Hoang A, Zhou L, Kalra S, Yetil A et al (2015) Resistance to Antiangiogenic therapy is associated with an immunosuppressive tumor microenvironment in metastatic renal cell carcinoma. Cancer Immunol Res 3:1017–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP et al (2010) Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res 70:6171–6180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Manning EA, Ullman JG, Leatherman JM, Asquith JM, Hansen TR et al (2007) A vascular endothelial growth factor receptor-2 inhibitor enhances antitumor immunity through an immune-based mechanism. Clin Cancer Res 13:3951–3959

    Article  CAS  PubMed  Google Scholar 

  85. Hammers HJ, Plimack ER, Infante JR, Rini BI, McDermott DF et al (2015) Expanded cohort results from CheckMate 016: A phase I study of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma (mRCC). ASCO Meet Abstr 33:4516

    Google Scholar 

  86. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Taube JM, Klein A, Brahmer JR, Xu H, Pan X et al (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20:5064–5074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA et al (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369:122–133

    Article  CAS  PubMed  Google Scholar 

  90. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371:2189–2199

    Article  PubMed  PubMed Central  Google Scholar 

  91. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Snyder A, Wolchok JD, Chan TA (2015) Genetic basis for clinical response to CTLA-4 blockade. N Engl J Med 372:783

    Article  CAS  PubMed  Google Scholar 

  93. Kitano S, Postow MA, Ziegler CG, Kuk D, Panageas KS et al (2014) Computational algorithm-driven evaluation of monocytic myeloid-derived suppressor cell frequency for prediction of clinical outcomes. Cancer Immunol Res 2:812–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Meyer C, Cagnon L, Costa-Nunes CM, Baumgaertner P, Montandon N et al (2014) Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunol Immunother 63:247–257

    Article  CAS  PubMed  Google Scholar 

  95. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160:48–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523:231–235

    Article  CAS  PubMed  Google Scholar 

  97. Yuan J, Zhou J, Dong Z, Tandon S, Kuk D et al (2014) Pretreatment serum VEGF is associated with clinical response and overall survival in advanced melanoma patients treated with ipilimumab. Cancer Immunol Res 2:127–132

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigehisa Kitano M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Kitano, S., Ito, A., Kim, Y. (2017). Immunotherapy for Renal Cell Cancer (RCC). In: Oya, M. (eds) Renal Cell Carcinoma. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55531-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55531-5_12

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55530-8

  • Online ISBN: 978-4-431-55531-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics