First Steps in Chat-Based Negotiating Agents

  • Inon Zuckerman
  • Erel Segal-Halevi
  • Avi Rosenfeld
  • Sarit Kraus
Part of the Studies in Computational Intelligence book series (SCI, volume 596)


To date, a variety of automated negotiation agents have been created. While each of these agents has been shown to be effective in negotiating with people in specific environments, they lack natural language processing (NLP) methods required to enable real-world types of interactions. In this paper we study how existing agents must be modified to address this limitation. After performing an extensive study of agents’ negotiation with human subjects, we found that simply modifying existing agents to include an NLP module is insufficient to create these agents. Instead the agents’ strategies must be modified to address offers that do not include values for all the discussed issues (as is the case in menu-based interfaces) and consequently issue-by-issue interactions.


Negotiating agent Chat interface 


  1. 1.
    Baarslag, T., Fujita, K., Gerding, E.H., Hindriks, K., Ito, T., Jennings, N.R., Jonker, C., Kraus, S., Lin, R., Robu, V., Williams, C.R.: Evaluating practical negotiating agents: results and analysis of the 2011 international competition. Artif. Intell. 198, 73–103 (2013)CrossRefGoogle Scholar
  2. 2.
    Bac, M., Raff, H.: Issue-by-issue negotiations: the role of information and time preference. Games Econ. Behav. 13(1), 125–134 (1996)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Busch, L.-A., Horstmann, I.: A comment on issue-by-issue negotiations. Games Econ. Behav. 19(1), 144–148 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Byde, A., Yearworth, M., Chen, K.-Y., Bartolini, C.: Aut ONA: a system for automated multiple 1–1 negotiation. In: Proceedings of the 2003 IEEE International Conference on Electronic Commerce (CEC), pp. 59–67 (2003)Google Scholar
  5. 5.
    Carvalho, V.R., Cohen, W.W.: Single-pass online learning: performance, voting schemes and online feature selection. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’06, pp. 548–553. ACM, New York (2006)Google Scholar
  6. 6.
    Chen, MK.: Agendas in multi-issue bargaining: when to sweat the small stuff. Technical report, Harvard Department of Economics, Cambridge, November 2002Google Scholar
  7. 7.
    Coen, M.H.: Design principles for intelligent environments. In: AAAI/IAAI, pp. 547–554 (1998)Google Scholar
  8. 8.
    Cohen, P.R.: The role of natural language in a multimodal interface. In: Proceedings of the 5th Annual ACM Symposium on User Interface Software and Technology, UIST’92, pp. 143–149. ACM, New York (1992)Google Scholar
  9. 9.
    Dagan, I., Roth, D., Sammons, M., Zanzotto, F.M.: Recognizing textual entailment: models and applications. Synth. Lect. Hum. Lang. Technol. 6(4), 1–220 (2013)CrossRefGoogle Scholar
  10. 10.
    Dahlbäck, N., Jönsson, A., Ahrenberg, L.: Wizard of Oz studies: why and how. In: Proceedings of the 1st International Conference on Intelligent User Interfaces, IUI’93, pp. 193–200. ACM, New York (1993)Google Scholar
  11. 11.
    Gal, Y., Kraus, S., Gelfand, M., Khashan, H., Salmon, E.: An adaptive agent for negotiating with people in different cultures. ACM TIST 3(1), 8 (2011)Google Scholar
  12. 12.
    Hahn, S., Dinarelli, M., Raymond, C., Lefevre, F., Lehnen, P., de Mori, Renato, Moschitti, A., Ney, H., Riccardi, G.: Comparing Stochastic Approaches to Spoken Language Understanding in Multiple Languages. IEEE Transactions on Audio, Speech, and Language Processing, vol.19, no.6, pp.1569–1583 (2011). CrossRefGoogle Scholar
  13. 13.
    Jonker, C.M., Robu, V., Treur, J.: An agent architecture for multi-attribute negotiation using incomplete preference information. Auton. Agents Multi-Agent Syst. 15(2), 221–252 (2007)CrossRefGoogle Scholar
  14. 14.
    Jurafsky, D., Martin, James H.: Speech and Language Processing, 2nd edn, Prentice Hall (2008). ISBN:0131873210Google Scholar
  15. 15.
    Katz, R., Kraus, S.: Efficient agents for cliff edge environments with a large set of decision options. In: Proceedings of the 5th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 697–704 (2006)Google Scholar
  16. 16.
    Kelley, J.F.: An empirical methodology for writing user-friendly natural language computer applications. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI’83, pp. 193–196. ACM, New York (1983)Google Scholar
  17. 17.
    Kenny, P., Hartholt, A., Gratch, J., Swartout, W., Traum, D., Marsella, S., Piepol, D.: Building interactive virtual humans for training environments. In: Proceedings of Interservice/Industry Training, Simulation and Education Conference (I/ITSEC) (2007)Google Scholar
  18. 18.
    Kraus, S., Lehmann, D.: Designing and building a negotiating automated agent. Comput. Intell. 11(1), 132–171 (1995)CrossRefGoogle Scholar
  19. 19.
    Lin, R., Kraus, S.: Can automated agents proficiently negotiate with humans? CACM 53(1), 78–88 (2010)CrossRefGoogle Scholar
  20. 20.
    Lin, R., Kraus, S., Wilkenfeld, J., Barry, J.: Negotiating with bounded rational agents in environments with incomplete information using an automated agent. Artif. Intell. 172(6–7), 823–851 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Madjarov, G., Kocev, D., Gjorgjevikj, D., Džeroski, S.: An extensive experimental comparison of methods for multi-label learning. Pattern Recogn. 45(9), 3084–3104 (2012). CrossRefGoogle Scholar
  22. 22.
    Osborne, M.J., Rubinstein, A.: A Course In Game Theory. MIT Press, Cambridge (1994)zbMATHGoogle Scholar
  23. 23.
    Oshrat, Y., Lin, R., Kraus, S.: Facing the challenge of human-agent negotiations via effective general opponent modeling. In: Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems (AAMAS) (2009)Google Scholar
  24. 24.
    Pease, A., Colton, S., Smaill, A., Lee, J.: Semantic negotiation: Modelling ambiguity in dialogue. In: Proceedings of Edilog 2002, the 6th Workshop on the Semantics and Pragmatics of Dialogue, Edinburgh, UK (2002)Google Scholar
  25. 25.
    Shneiderman, B., Plaisant, C.: Designing the User Interface: Strategies for Effective Human-Computer Interaction, 4th edn. Pearson Addison Wesley, Boston (2004)Google Scholar
  26. 26.
    Tsoumakas, G., Katakis, I., Vlahavas, I.: Effective and efficient multilabel classification in domains with large number of labels. In: Proceedings ECML/PKDD 2008 Workshop on Mining Multidimensional Data (MMD’08) (2008)Google Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Inon Zuckerman
    • 1
  • Erel Segal-Halevi
    • 2
  • Avi Rosenfeld
    • 3
  • Sarit Kraus
    • 2
  1. 1.Department of Industrial Engineering and ManagementAriel UniversityArielIsrael
  2. 2.Department of Computer ScienceBar-Ilan UniversityRamat-ganIsrael
  3. 3.Department of Industrial EngineeringJerusalem College of TechnologyJerusalemIsrael

Personalised recommendations