Skip to main content

Optogenetic Manipulation and Probing

  • Chapter
Optogenetics

Abstract

Controlling and monitoring the activities of defined cell populations should provide powerful methodologies for better understanding individual cellular functions in vivo. To enable the control and monitoring of cellular activities, ‘photo-actuator molecules’ and ‘fluorescent probe molecules’ have been generated, respectively. Photo-actuators are the motor molecules that can trigger cellular activities by photo-activation of specific intracellular molecules, and fluorescent probes are the molecules utilized to detect cellular activities by emitting fluorescence upon binding to their specific target structures of intracellular molecules. These actuators and probes are also known as ‘optogenetic tools’, and they can be expressed in specific cells or specific organelles for a long period, because they are genetically encoded. In recent years, the development and improvement of optogenetic tools has progressed rapidly. Researchers can now choose optogenetic tools that better suit their needs. In this review, we describe the history, species, and development of optogenetic tools, and future issues, limiting the definition of optogenetic tools to those based on proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Airan RD, Thompson KR, Fenno LE et al (2009) Temporally precise in vivo control of intracellular signalling. Nature 458:1025–1029

    Article  CAS  PubMed  Google Scholar 

  • Akerboom J, Chen TW, Wardill TJ et al (2012) Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci 32:13819–13840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ataka K, Pieribone VA (2002) A genetically targetable fluorescent probe of channel gating with rapid kinetics. Biophys J 82:509–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baird GS, Zacharias DA, Tsien RY (1999) Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci U S A 96:11241–11246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berndt A, Yizhar O, Gunaydin LA et al (2009) Bi-stable neural state switches. Nat Neurosci 12:229–234

    Article  CAS  PubMed  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Leischner U, Rochefort NL et al (2011) Functional mapping of single spines in cortical neurons in vivo. Nature 475:501–505

    Article  CAS  PubMed  Google Scholar 

  • Chow BY, Han X, Dobry AS et al (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han X, Boyden ES (2007) Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2:e299. doi:10.1371/journal.pone.0000299

    Article  PubMed Central  PubMed  Google Scholar 

  • Heim N, Griesbeck O (2004) Genetically encoded indicators of cellular calcium dynamics based on troponin C and green fluorescent protein. J Biol Chem 279:14280–14286

    Article  CAS  PubMed  Google Scholar 

  • Hochbaum DR, Zhao Y, Farhi SL et al (2014) All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat Methods 11:825–833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horikawa K, Yamada Y, Matsuda T et al (2010) Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano. Nat Methods 7:729–732

    Article  CAS  PubMed  Google Scholar 

  • Inoue M, Takeuchi A, Horigane S et al (2015) Rational design of a high-affinity, fast, red calcium indicator R-CaMP2. Nat Methods 12:64–70

    Google Scholar 

  • Kralj JM, Douglass AD, Hochbaum DR et al (2011) Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat Methods 9:90–95

    Article  PubMed Central  PubMed  Google Scholar 

  • Kuner T, Augustine GJ (2000) A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons. Neuron 27:447–459

    Article  CAS  PubMed  Google Scholar 

  • Li H, Foss SM, Dobryy YL et al (2011) Concurrent imaging of synaptic vesicle recycling and calcium dynamics. Front Mol Neurosci 4:34. doi:10.3389/fnmol.2011.00034

    Article  PubMed Central  PubMed  Google Scholar 

  • Miesenböck G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195

    Article  PubMed  Google Scholar 

  • Miyawaki A, Llopis J, Heim R et al (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    Article  CAS  PubMed  Google Scholar 

  • Murata Y, Iwasaki H, Sasaki M et al (2005) Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435:1239–1243

    Article  CAS  PubMed  Google Scholar 

  • Mutoh H, Akemann W, Knöpfel T (2012) Genetically engineered fluorescent voltage reporters. ACS Chem Neurosci 3:585–592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagai T, Sawano A, Park ES et al (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci U S A 98:3197–3202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat Biotechnol 19:137–141

    Article  CAS  PubMed  Google Scholar 

  • Oh E, Maejima T, Liu C et al (2010) Substitution of 5-HT1A receptor signaling by a light-activated G protein-coupled receptor. J Biol Chem 285:30825–30836

    Google Scholar 

  • Ohkura M, Matsuzaki M, Kasai H et al (2005) Genetically encoded bright Ca2+ probe applicable for dynamic Ca2+ imaging of dendritic spines. Anal Chem 77:5861–5869

    Article  CAS  PubMed  Google Scholar 

  • Ohkura M, Sasaki T, Kobayashi C et al (2012a) An improved genetically encoded red fluorescent Ca2+ indicator for detecting optically evoked action potentials. PLoS One 7:e39933. doi:10.1371/journal.pone.0039933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohkura M, Sasaki T, Sadakari J et al (2012b) Genetically encoded green fluorescent Ca2+ indicators with improved detectability for neuronal Ca2+ signals. PLoS One 7:e51286. doi:10.1371/journal.pone.0051286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakai R, Repunte-Canonigo V, Raj CD et al (2001) Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur J Neurosci 13:2314–2318

    Article  CAS  PubMed  Google Scholar 

  • Sankaranarayanan S, Ryan TA (2001) Calcium accelerates endocytosis of vSNAREs at hippocampal synapses. Nat Neurosci 4:129–136

    Article  CAS  PubMed  Google Scholar 

  • Siegel MS, Isacoff EY (1997) A genetically encoded optical probe of membrane voltage. Neuron 19:735–741

    Article  CAS  PubMed  Google Scholar 

  • Takahashi N, Kitamura K, Matsuo N et al (2012) Locally synchronized synaptic inputs. Science 335:353–356

    Article  CAS  PubMed  Google Scholar 

  • Tallini YN, Ohkura M, Choi BR et al (2006) Imaging cellular signals in the heart in vivo: cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc Natl Acad Sci U S A 103:4753–4758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tian L, Hires SA, Mao T et al (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang F, Wang LP, Brauner M et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Araki S, Wu J et al (2011) An expanded palette of genetically encoded Ca2+ indicators. Science 333:1888–1891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zoltowski BD, Schwerdtfeger C, Widom J et al (2007) Conformational switching in the fungal light sensor Vivid. Science 316:1054–1057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masamichi Ohkura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Ohkura, M., Sadakari, J., Nakai, J. (2015). Optogenetic Manipulation and Probing. In: Yawo, H., Kandori, H., Koizumi, A. (eds) Optogenetics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55516-2_9

Download citation

Publish with us

Policies and ethics