Skip to main content

Color Tuning in Retinylidene Proteins

  • Chapter
Optogenetics

Abstract

Retinylidene proteins (also called rhodopsins) are membrane-embedded photoreceptors that contain a vitamin A aldehyde linked to a lysine residue by a Schiff base as their light-sensing chromophore. The chromophore is surrounded by seven-transmembrane α-helices and absorbs light at different wavelengths due to differences in the electronic energy gap between its ground and excited states. The variation in the wavelength of maximal absorption (λmax: 360–620 nm) of rhodopsins arises due to interaction between the apoprotein (opsin) and the retinyl chromophore, the ‘opsin shift’. This chapter reviews the color tuning mechanisms in type-1 microbial and type-2 animal rhodopsins as revealed mainly by our experimental and theoretical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altenbach C, Kusnetzow AK, Ernst OP et al (2008) High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. Proc Natl Acad Sci U S A 105:7439–7444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andersen LH, Nielsen IB, Kristensen MB et al (2005) Absorption of Schiff-base retinal chromophore in Vacuo. J Am Chem Soc 127:12347–12350

    Article  CAS  PubMed  Google Scholar 

  • Bailes HJ, Zhuang L-Y, Lucas RJ (2012) Reproducible and sustained regulation of Gαs signalling using a metazoan opsin as an optogenetic tool. PLoS One 7:e30774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Balashov SP, Imasheva ES, Boichenko VA (2005) Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309:2061–2064

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Birge RR (1990) Photophysics and molecular electronic applications of the rhodopsins. Annu Rev Phys Chem 41:683–733

    Article  CAS  PubMed  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  • Briggs WR, Spudich JL (2005) Handbook of photosensory receptors. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Cembran A, Luque RG, Altoè P et al (2005) Structure, spectroscopy, and spectral tuning of the gas-phase retinal chromophore: the beta-ionone “handle” and alkyl group effect. J Phys Chem A 109:6597–6605

    Article  CAS  PubMed  Google Scholar 

  • Chow BY, Han X, Dobry AS et al (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cornell WD, Cieplak P, Bayly CI et al (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  • Coto PB, Strambi A, Ferré N et al (2006) The color of rhodopsins at the ab initio multiconfigurational perturbation theory resolution. Proc Natl Acad Sci U S A 103:17154–17159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farrens DL, Altenbach C, Yang K et al (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274:768–770

    Article  CAS  PubMed  Google Scholar 

  • Fasick JI, Applebury ML, Oprian DD (2002) Spectral tuning in the mammalian short-wavelength sensitive cone pigments. Biochemistry 41:6860–6865

    Article  CAS  PubMed  Google Scholar 

  • Garczarek F, Gerwert K (2006) Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 439:109–112

    Article  CAS  PubMed  Google Scholar 

  • Grote M, Engelhard M, Hegemann P (2014) Of ion pumps, sensors and channels – perspectives on microbial rhodopsins between science and history. Biochim Biophys Acta 1837:533–545

    Article  CAS  PubMed  Google Scholar 

  • Hara T, Hara R, Takeuchi J (1967) Vision in octopus and squid: rhodopsin and retinochrome in the octopus retina. Nature 214:572–573

    Article  CAS  PubMed  Google Scholar 

  • Hara-Nishimura I, Matsumoto T, Mori H et al (1993) Cloning and nucleotide sequence of cDNA for rhodopsin of the squid Todarodes pacificus. FEBS Lett 317:5–11

    Article  CAS  PubMed  Google Scholar 

  • Hubbard R, St George RCC (1958) The rhodopsin system of the squid. J Gen Physiol 41:501–528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hubbell WL, Altenbach C, Hubbell CM et al (2003) Rhodopsin structure, dynamics, and activation: a perspective from crystallography, site-directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking. Adv Protein Chem 63:243–290

    CAS  PubMed  Google Scholar 

  • Inoue K, Tsukamoto T, Sudo Y (2014) Molecular and evolutionary aspects of microbial sensory rhodopsins. Biochim Biophys Acta 1837:562–577

    Article  CAS  PubMed  Google Scholar 

  • Irieda H, Reissig L, Kawanabe A et al (2011) Structural characteristics around the β-ionone ring of the retinal chromophore in Salinibacter sensory rhodopsin I. Biochemistry 50:4912–4922

    Article  CAS  PubMed  Google Scholar 

  • Irieda H, Morita T, Maki K et al (2012) Photo-induced regulation of the chromatic adaptive gene expression by Anabaena sensory rhodopsin. J Biol Chem 287:32485–32493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jongejan A, Bruysters M, Ballesteros JA et al (2005) Linking agonist binding to histamine H1 receptor activation. Nat Chem Biol 1:98–103

    Article  CAS  PubMed  Google Scholar 

  • Katayama K, Furutani Y, Imai H et al (2012) Protein-bound water molecules in primate red- and green-sensitive visual pigments. Biochemistry 51:1126–1133

    Article  CAS  PubMed  Google Scholar 

  • Kato HE, Zhang F, Yizhar O et al (2012) Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482:369–374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kitajima-Ihara T, Furutani Y, Suzuki D et al (2008) Salinibacter sensory rhodopsin: sensory rhodopsin I-like protein from a eubacterium. J Biol Chem 283:23533–23541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kito Y, Partridge JC, Seidou M et al (1992) The absorbance spectrum and photosensitivity of a new synthetic “visual pigment” based on 4-hydroxyretinal. Vision Res 32:3–10

    Article  CAS  PubMed  Google Scholar 

  • Kolbe M, Besir H, Essen LO et al (2000) Structure of the light-driven chloride pump halorhodopsin at 1.8 Å resolution. Science 288:1390–1396

    Article  CAS  PubMed  Google Scholar 

  • Kouyama T, Kanada S, Takeguchi Y et al (2010) Crystal structure of the light-driven chloride pump halorhodopsin from Natronomonas pharaonis. J Mol Biol 396:564–579

    Article  CAS  PubMed  Google Scholar 

  • Koyanagi M, Terakita A (2008) Gq-coupled rhodopsin subfamily composed of invertebrate visual pigment and melanopsin. Photochem Photobiol 84:1024–1030

    Article  CAS  PubMed  Google Scholar 

  • Lanyi JK (2004) Bacteriorhodopsin. Annu Rev Physiol 66:665–688

    Article  CAS  PubMed  Google Scholar 

  • Luecke H, Schobert B, Richter HT et al (1999) Structure of bacteriorhodopsin at 1.55 A resolution. J Mol Biol 291:899–911

    Article  CAS  PubMed  Google Scholar 

  • Luecke H, Schobert B, Stagno J et al (2008) Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc Natl Acad Sci U S A 105:16561–16565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsui S, Seidou M, Uchiyama I et al (1988) 4-Hydroxyretinal, a new visual pigment chromophore found in the bioluminescent squid, Watasenia scintillans. Biochim Biophys Acta 966:370–374

    Article  CAS  PubMed  Google Scholar 

  • Merbs SL, Nathans J (1992) Absorption spectra of human cone pigments. Nature 356:433–435

    Article  CAS  PubMed  Google Scholar 

  • Michinomae M, Masuda H, Seidou M et al (1994) Structural basis for wavelength discrimination in the banked retina of the firefly squid, Warasenia scintillans. J Exp Biol 193:1–12

    PubMed  Google Scholar 

  • Mori A, Yagasaki J, Homma M et al (2013) Investigation of the chromophore binding cavity in the 11-cis acceptable microbial rhodopsin MR. Chem Phys 419:23–29

    Article  CAS  Google Scholar 

  • Mukohata Y, Ihara K, Tamura T et al (1999) Halobacterial rhodopsins. J Biochem 125:649–657

    Article  CAS  PubMed  Google Scholar 

  • Murakami M, Kouyama T (2008) Crystal structure of squid rhodopsin. Nature 453:363–367

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi K (1991) 11-cis-retinal, a molecule uniquely suited for vision. Pure Appl Chem 63:161–170

    Article  CAS  Google Scholar 

  • Nathans J, Hogness DS (1983) Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell 34:807–814

    Article  CAS  PubMed  Google Scholar 

  • Nathans J, Thomas D, Hogness DS (1986) Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science 232:193–202

    Article  CAS  PubMed  Google Scholar 

  • Neese FA (2003) A spectroscopy oriented configuration interaction procedure. J Chem Phys 119:9428–9443

    Article  CAS  Google Scholar 

  • Nielsen IB, Lammich L, Andersen LH (2006) S1 and S2 excited states of gas-phase Schiff-base retinal chromophores. Phys Rev Lett 96:018304

    Article  CAS  PubMed  Google Scholar 

  • Okada T, Fujiyoshi Y, Silow M et al (2002) Functional role of internal water molecules in rhodopsin revealed by x-ray crystallography. Proc Natl Acad Sci U S A 99:5982–5987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okada T, Sugihara M, Bondar AN et al (2004) The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure. J Mol Biol 342:571–583

    Article  CAS  PubMed  Google Scholar 

  • Oprian DD, Asenjo AB, Lee N et al (1991) Design, chemical synthesis, and expression of genes for the three human color vision pigments. Biochemistry 30:11367–11372

    Article  CAS  PubMed  Google Scholar 

  • Ota T, Furutani Y, Terakita A et al (2006) Structural changes in the Schiff base region of squid rhodopsin upon photoisomerization studied by low-temperature FTIR spectroscopy. Biochemistry 45:2845–2851

    Article  CAS  PubMed  Google Scholar 

  • Pal R, Sekharan S, Batista VS (2013) Spectral tuning in Halorhodopsin: the chloride pump photoreceptor. J Am Chem Soc 135:9624–9627

    Article  CAS  PubMed  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T et al (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  CAS  PubMed  Google Scholar 

  • Pardo L, Deupi X, Dölker N et al (2007) The role of internal water molecules in the structure and function of the rhodopsin family of G protein-coupled receptors. Chem Bio Chem 8:19–24

    Article  CAS  PubMed  Google Scholar 

  • Pastrana E (2011) Perfecting ChR2. Nat Methods 8:447

    Article  CAS  PubMed  Google Scholar 

  • Provencio I, Jiang G, De Grip WJ et al (1998) Melanopsin: an opsin in melanophores, brain, and eye. Proc Natl Acad Sci U S A 95:340–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Provencio I, Rodriguez IR, Jiang G et al (2000) A novel human opsin in the inner retina. J Neurosci 20:600–605

    CAS  PubMed  Google Scholar 

  • Reissig L, Iwata T, Kikukawa T et al (2012) Influence of halide binding on the hydrogen bonding network in the active site of Salinibacter sensory rhodopsin I. Biochemistry 51:8802–8813

    Article  CAS  PubMed  Google Scholar 

  • Royant A, Nollert P, Edman K et al (2001) X-ray structure of sensory rhodopsin II at 2.1-Å resolution. Proc Natl Acad Sci U S A 98:10131–10136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Seidou M, Sugahara M, Uchiyama H et al (1990) On the three visual pigments in the retina of the firefly squid, Warasenia scintillans. J Comp Physiol A 166:769–773

    Article  Google Scholar 

  • Sekharan S (2009) Water-mediated spectral shifts in rhodopsin and bathorhodopsin. Photochem Phobiol 85:517–520

    Article  CAS  Google Scholar 

  • Sekharan S, Buss V (2008) Glutamic acid 181 is uncharged in dark-adapted visual rhodopsin. J Am Chem Soc 130:17220–17221

    Article  CAS  PubMed  Google Scholar 

  • Sekharan S, Morokuma K (2011a) QM/MM study of the structure, energy storage, and origin of the bathochromic shift in vertebrate and invertebrate bathorhodopsins. J Am Chem Soc 133:4734–4737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sekharan S, Morokuma K (2011b) Why 11-cis-retinal? Why not 7-cis, 9-cis or 13-cis-retinal in the eye? J Am Chem Soc 133:19052–19055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sekharan S, Weingart O, Buss V (2006) Ground and excited states of retinal Schiff base chromophores by multiconfigurational perturbation theory. Biophys J 91:L07–L09

    Article  PubMed Central  PubMed  Google Scholar 

  • Sekharan S, Sugihara M, Buss V (2007a) Origin of spectral tuning in rhodopsin-it is not the binding pocket. Angew Chem Int Ed Engl 46:269–271

    Article  CAS  PubMed  Google Scholar 

  • Sekharan S, Sugihara M, Weingart O et al (2007b) Protein assistance in the photoisomerization of rhodopsin and 9-cis-rhodopsin—insights from experiment and theory. J Am Chem Soc 129:1052–1054

    Article  CAS  PubMed  Google Scholar 

  • Sekharan S, Altun A, Morokuma K (2010a) Photochemistry of visual pigment in a Gq proton-coupled receptor (GPCR)-insights from structural and spectral tuning studies on squid rhodopsin. Chem Eur J 16:1744–1749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sekharan S, Altun A, Morokuma K (2010b) QM/MM study of dehydro and dihydro β-ionone retinal analogues in squid and bovine rhodopsins: implications for vision in salamander rhodopsin. J Am Chem Soc 132:15856–15859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sekharan S, Yokoyama S, Morokuma K (2011) Quantum mechanical/molecular mechanical structure, enantioselectivity, and spectroscopy of hydroxyretinals and insights into the evolution of color vision in small white butterflies. J Phys Chem B 115:15380–15388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sekharan S, Wei JN, Batista VS et al (2012a) The active site of melanopsin: the biological clock photoreceptor. J Am Chem Soc 134:19536–19539

    Article  CAS  PubMed  Google Scholar 

  • Sekharan S, Katayama K, Kandori H et al (2012b) Color vision: “OH-site” rule for seeing red and green. J Am Chem Soc 134:10706–10712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sekharan S, Mooney VL, Rivalta I et al (2013) Spectral tuning of ultraviolet cone pigments: an interhelical lock mechanism. J Am Chem Soc 135:19064–19067

    Article  CAS  PubMed  Google Scholar 

  • Sheikh SP, Zvyaga T, Lichtarge O et al (1996) Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F. Nature 383:347–350

    Article  CAS  PubMed  Google Scholar 

  • Shichida Y, Imai H (1998) Visual pigment: G-protein-coupled receptor for light signals. Cell Mol Life Sci 54:1299–1315

    Article  CAS  PubMed  Google Scholar 

  • Shimamura T, Hiraki K, Takahashi N et al (2008) Crystal structure of squid rhodopsin with intracellularly extended cytoplasmic region. J Biol Chem 283:17753–17756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shimono K, Ikeura Y, Sudo Y et al (2001) Environment around the chromophore in pharaonis phoborhodopsin: mutation analysis of the retinal binding site. Biochim Biophys Acta 1515:92–100

    Article  CAS  PubMed  Google Scholar 

  • Shimono K, Hayashi T, Ikeura Y et al (2003) Importance of the broad regional interaction for spectral tuning in Natronobacterium pharaonis phoborhodopsin (sensory rhodopsin II). J Biol Chem 278:23882–23889

    Article  CAS  PubMed  Google Scholar 

  • Sineshchekov OA, Govorunova EG, Wang J et al (2012) Enhancement of the long-wavelength sensitivity of optogenetic microbial rhodopsins by 3,4-dehydroretinal. Biochemistry 51:4499–4506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spudich JL, Bogomolni RA (1984) Mechanism of colour discrimination by a bacterial sensory rhodopsin. Nature 312:509–513

    Article  CAS  PubMed  Google Scholar 

  • Spudich JL, Yang CS, Jung KH et al (2000) Retinylidene proteins: structures and functions from archaea to humans. Annu Rev Cell Dev Biol 16:365–392

    Article  CAS  PubMed  Google Scholar 

  • Sudo Y, Spudich JL (2006) Three strategically placed hydrogen-bonding residues convert a proton pump into a sensory receptor. Proc Natl Acad Sci U S A 103:16129–16134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sudo Y, Yuasa Y, Shibata J et al (2011a) Spectral tuning in sensory rhodopsin I from Salinibacter ruber. J Biol Chem 286:11328–11336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sudo Y, Ihara K, Kobayashi S et al (2011b) A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties. J Biol Chem 286:5967–5976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sudo Y, Okazaki A, Ono H et al (2013) A blue-shifted light-driven proton pump for neural silencing. J Biol Chem 288:20624–20632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki T, Makino-Tasaka M, Miyata S et al (1985) Competition between retinal and 3-dehydroretinal for opsin in the regeneration of visual pigment. Vision Res 25:149–154

    Article  CAS  PubMed  Google Scholar 

  • Suzuki D, Furutani Y, Inoue K et al (2009) Effects of chloride ion binding on the photochemical properties of salinibacter sensory rhodopsin I. J Mol Biol 392:48–62

    Article  CAS  PubMed  Google Scholar 

  • Terakita A, Tsukamoto H, Koyanagi M et al (2008) Expression and comparative characterization of Gq-coupled invertebrate visual pigments and melanopsin. J Neurochem 105:883–890

    Article  CAS  PubMed  Google Scholar 

  • Váró G, Brown LS, Sasaki J et al (1995) Light-driven chloride ion transport by halorhodopsin from Natronobacterium pharaonis. 1. The photochemical cycle. Biochemistry 34:14490–14499

    Article  PubMed  Google Scholar 

  • Vogeley L, Sineshchekov OA, Trivedi VD et al (2004) Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 Å. Science 306:1390–1393

    Article  CAS  PubMed  Google Scholar 

  • Vogt K (1983) Is the fly visual pigment a rhodopsin? Z Naturforsch Sect C Biosci 38:329–333

    Google Scholar 

  • Wald G (1935) Carotenoids and the visual cycle. J Gen Physiol 19:351–371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wald G (1936) Pigments of the retina. J Gen Physiol 20:45–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wald G (1937a) Visual purple system in fresh-water fishes. Nature 139:1017–1018

    Article  CAS  Google Scholar 

  • Wald G (1937b) Photo-labile pigments of the chicken retina. Nature 140:545–546

    Article  CAS  Google Scholar 

  • Wald G (1939) The porphyropsin visual system. J Gen Physiol 22:775–794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williams SC, Deisseroth K (2013) Optogenetics. Proc Natl Acad Sci U S A 110:16287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu W, Campillo M, Pardo L et al (2005) The seventh transmembrane domains of the δ and κ opioid receptors have different accessibility patterns and interhelical intrercations. Biochemistry 44:16014–16025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan EC, Kazmi MA, Ganim Z et al (2003) Retinal couterion switch in the photoactivation of the G protein-coupled receptor rhodopsin. Proc Natl Acad Sci U S A 100:9262–9267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yokoyama S (2008) Evolution of dim-light and color vision pigments. Annu Rev Genomics Hum Genet 9:259–282

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama S, Radlwimmer F (1998) The “five-sites” rule and the evolution of red and green color vision in mammals. Mol Biol Evol 15:560–567

    Article  CAS  PubMed  Google Scholar 

  • Yoshitsugu M, Shibata M, Ikeda D et al (2008) Color change of proteorhodopsin by a single amino acid replacement at a distant cytoplasmic loop. Angew Chem Int Ed Engl 47:3923–3926

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Sudo PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Katayama, K., Sekharan, S., Sudo, Y. (2015). Color Tuning in Retinylidene Proteins. In: Yawo, H., Kandori, H., Koizumi, A. (eds) Optogenetics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55516-2_7

Download citation

Publish with us

Policies and ethics