Skip to main content

Photochemistry of Halorhodopsin

  • Chapter
Optogenetics

Abstract

Halorhodopsin is a light-driven inward Cl pump found in the membrane of a halophilic archaeon called Halobacterium salinarum. While the physiological role of halorhodopsin has not been fully resolved, its functional mechanism has been studied as a model system for anion transport. Halorhodopsin has become widely used in optogenetics due to its light-induced neural-silencing ability. Here, we summarize the functional analyses of halorhodopsin since its discovery. Like other microbial rhodopsins, halorhodopsin contains all-trans retinal bound to a specific lysine residue through a protonated Schiff base. Proton-pumping rhodopsins utilize Asp residues as the counter-ions for the protonated Schiff bases. In halorhodopsin, this Asp residue is replaced by Thr, and Cl becomes the counter-ion. Photoexcited halorhodopsin undergoes a photocycle including several intermediates where sequential Cl movements occur. During the formation of the N-intermediate, Cl moves from its original position to the cytoplasmic channel. During the subsequent N decay, the Cl is released to the cytoplasmic medium. During the Cl release, the dissociation constant of Cl increases significantly compared with that at the dark state. Next, another Cl is captured from the extracellular medium to complete the net Cl translocation. This recapture process is not well defined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balashov SP (2000) Protonation reactions and their coupling in bacteriorhodopsin. Biochim Biophys Acta 1460(1):75–94

    Article  CAS  PubMed  Google Scholar 

  • Blanck A, Oesterhelt D (1987) The halo-opsin gene. II. Sequence, primary structure of halorhodopsin and comparison with bacteriorhodopsin. EMBO J 6(1):265–273

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bogomolni RA, Stoeckenius W, Szundi I et al (1994) Removal of transducer HtrI allows electrogenic proton translocation by sensory rhodopsin I. Proc Natl Acad Sci USA 91(21):10188–10192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chizhov I, Engelhard M (2001) Temperature and halide dependence of the photocycle of halorhodopsin from Natronobacterium pharaonis. Biophys J 81(3):1600–1612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chizhov I, Chernavskii DS, Engelhard M et al (1996) Spectrally silent transitions in the bacteriorhodopsin photocycle. Biophys J 71(5):2329–2345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chon Y-S, Kandori H, Sasaki J et al (1999) Existence of two L photointermediates of halorhodopsin from Halobacterium salinarum, differing in their protein and water FTIR bands. Biochemistry 38(29):9449–9455

    Article  CAS  PubMed  Google Scholar 

  • Gmelin W, Zeth K, Efremov R et al (2007) The crystal structure of the L1 intermediate of halorhodopsin at 1.9 Å resolution. Photochem Photobiol 83(2):369–377

    Article  CAS  PubMed  Google Scholar 

  • Guijarro J, Engelhard M, Siebert F (2006) Anion uptake in halorhodopsin from Natronomonas pharaonis studied by FTIR spectroscopy: consequences for the anion transport mechanism. Biochemistry 45(38):11578–11588

    Article  CAS  PubMed  Google Scholar 

  • Hackmann C, Guijarro J, Chizhov I et al (2001) Static and time-resolved step-scan Fourier transform infrared investigations of the photoreaction of halorhodopsin from Natronobacterium pharaonis: consequences for models of the anion translocation mechanism. Biophys J 81(1):394–406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hasegawa C, Kikukawa T, Miyauchi S et al (2007) Interaction of the halobacterial transducer to a halorhodopsin mutant engineered so as to bind the transducer: Cl circulation within the extracellular channel. Photochem Photobiol 83(2):293–302

    Article  CAS  PubMed  Google Scholar 

  • Haupts U, Tittor J, Oesterhelt D (1999) Closing in on bacteriorhodopsin: progress in understanding the molecule. Annu Rev Biophys Biomol Struct 28:367–399

    Article  CAS  PubMed  Google Scholar 

  • Heberle J (2000) Proton transfer reactions across bacteriorhodopsin and along the membrane. Biochim Biophys Acta 1458(1):135–147

    Article  CAS  PubMed  Google Scholar 

  • Hohenfeld IP, Wegener AA, Engelhard M (1999) Purification of histidine tagged bacteriorhodopsin, pharaonis halorhodopsin and pharaonis sensory rhodopsin II functionally expressed in Escherichia coli. FEBS Lett 442(2–3):198–202

    Article  CAS  PubMed  Google Scholar 

  • Ihara K, Narusawa A, Maruyama K et al (2008) A halorhodopsin-overproducing mutant isolated from an extremely haloalkaliphilic archaeon Natronomonas pharaonis. FEBS Lett 582(19):2931–2936

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Kubo M, Demura M et al (2009) Reaction dynamics of halorhodopsin studied by time-resolved diffusion. Biophys J 96(9):3724–3734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamo N, Takeuchi M, Hazemoto N et al (1983) Light-induced ∆pH of envelope vesicles containing halorhodopsin measured by use of a spin probe. Arch Biochem Biophys 221(2):514–525

    Article  CAS  PubMed  Google Scholar 

  • Kamo N, Hazemoto N, Kobatake Y et al (1985) Light and dark adaptation of halorhodopsin. Arch Biochem Biophys 238(1):90–96

    Article  CAS  PubMed  Google Scholar 

  • Kanada S, Takeguchi Y, Murakami M et al (2011) Crystal structures of an O-like blue form and an anion-free yellow form of pharaonis halorhodopsin. J Mol Biol 413(1):162–176

    Article  CAS  PubMed  Google Scholar 

  • Kikukawa T, Kokubo A, Tsukamoto T et al (2012) When does halorhodopsin capture and release Cl during photocycle? Examination by spectrum changes of an intrinsic voltage-sensitive dye, bacterioruberin. In 15th international conference on retinal proteins, Ascona, 30 Sept–5 Oct 2012

    Google Scholar 

  • Kolbe M, Besir H, Essen LO et al (2000) Structure of the light-driven chloride pump halorhodopsin at 1.8 Å resolution. Science 288(5470):1390–1396

    Article  CAS  PubMed  Google Scholar 

  • Kouyama T, Kanada S, Takeguchi Y et al (2010) Crystal structure of the light-driven chloride pump halorhodopsin from Natronomonas pharaonis. J Mol Biol 396(3):564–579

    Article  CAS  PubMed  Google Scholar 

  • Lanyi JK (1986) Photochromism of halorhodopsin. cis/trans isomerization of the retinal around the 13–14 double bond. J Biol Chem 261(30):14025–14030

    CAS  PubMed  Google Scholar 

  • Lanyi JK (2004) Bacteriorhodopsin. Annu Rev Physiol 66:665–688

    Article  CAS  PubMed  Google Scholar 

  • Lanyi JK (2006) Proton transfers in the bacteriorhodopsin photocycle. Biochim Biophys Acta 1757(8):1012–1018

    Article  CAS  PubMed  Google Scholar 

  • Lindley EV, MacDonald RE (1979) A second mechanism for sodium extrusion in Halobacterium halobium: a light-driven sodium pump. Biochem Biophys Res Commun 88(2):491–499

    Article  CAS  PubMed  Google Scholar 

  • Ludmann K, Ibron G, Lanyi JK et al (2000) Charge motions during the photocycle of pharaonis halorhodopsin. Biophys J 78(2):959–966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luisi BF, Lanyi JK, Weber HJ (1980) Na+ transport via Na+/H+ antiport in Halobacterium halobium envelope vesicles. FEBS Lett 117(1):354–358

    Article  CAS  PubMed  Google Scholar 

  • Matsuno-Yagi A, Mukohata Y (1977) Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem Biophys Res Commun 78(1):237–243

    Article  CAS  PubMed  Google Scholar 

  • Matsuno-Yagi A, Mukohata Y (1980) ATP synthesis linked to light-dependent proton uptake in a red mutant strain of Halobacterium lacking bacteriorhodopsin. Arch Biochem Biophys 199(1):297–303

    Article  CAS  PubMed  Google Scholar 

  • Mevorat-Kaplan K, Brumfeld V, Engelhard M et al (2006) The protonated Schiff base of halorhodopsin from Natronobacterium pharaonis is hydrolyzed at elevated temperatures. Photochem Photobiol 82(6):1414–1421

    CAS  PubMed  Google Scholar 

  • Mukohata Y, Kaji Y (1981) Light-induced membrane-potential increase, ATP synthesis, and proton uptake in Halobacterium halobium R1mR catalyzed by halorhodopsin: Effects of N, N′-dicyclohexylcarbodiimide, triphenyltin chloride, and 3, 5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF6847). Arch Biochem Biophys 206(1):72–76

    Article  CAS  PubMed  Google Scholar 

  • Muneyuki E, Shibazaki C, Ohtani H et al (1999) Time-resolved measurements of photovoltage generation by bacteriorhodopsin and halorhodopsin adsorbed on a thin polymer film. J Biochem 125(2):270–276

    Article  CAS  PubMed  Google Scholar 

  • Muroda K, Nakashima K, Shibata M et al (2012) Protein-bound water as the determinant of asymmetric functional conversion between light-driven proton and chloride pumps. Biochemistry 51:4677–4684

    Article  CAS  PubMed  Google Scholar 

  • Oesterhelt D (1995) Structure and function of halorhodopsin. Isr J Chem 35(3–4):475–494

    Article  CAS  Google Scholar 

  • Oesterhelt D, Stoeckenius W (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nature 233(39):149–152

    CAS  Google Scholar 

  • Oesterhelt D, Stoeckenius W (1973) Functions of a new photoreceptor membrane. Proc Natl Acad Sci USA 70(10):2853–2857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ogurusu T, Maeda A, Sasaki N et al (1981) Light-induced reaction of halorhodopsin prepared under low salt conditions. J Biochem 90(5):1267–1274

    CAS  PubMed  Google Scholar 

  • Ogurusu T, Maeda A, Sasaki N et al (1982) Effects of chloride on the absorption spectrum and photoreactions of halorhodopsin. Biochim Biophys Acta 682(3):446–451

    Article  CAS  Google Scholar 

  • Otomo J, Muramatsu T (1995) Over-expression of a new photo-active halorhodopsin in Halobacterium salinarium. Biochim Biophys Acta 1240(2):248–256

    Article  PubMed  Google Scholar 

  • Pfeifer F, Weidinger G, Goebel W (1981) Genetic variability in Halobacterium halobium. J Bacteriol 145(1):375–381

    CAS  PubMed Central  PubMed  Google Scholar 

  • Racker E, Stoeckenius W (1974) Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation. J Biol Chem 249(2):662–663

    CAS  PubMed  Google Scholar 

  • Rüdiger M, Oesterhelt D (1997) Specific arginine and threonine residues control anion binding and transport in the light-driven chloride pump halorhodopsin. EMBO J 16(13):3813–3821

    Article  PubMed Central  PubMed  Google Scholar 

  • Rüdiger M, Haupts U, Gerwert K et al (1995) Chemical reconstitution of a chloride pump inactivated by a single point mutation. EMBO J 14(8):1599–1606

    PubMed Central  PubMed  Google Scholar 

  • Sasaki J, Brown LS, Chon YS et al (1995) Conversion of bacteriorhodopsin into a chloride ion pump. Science 269(5220):73–75

    Article  CAS  PubMed  Google Scholar 

  • Sass HJ, Buldt G, Gessenich R et al (2000) Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin. Nature 406(6796):649–653

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Kanamori T, Kamo N et al (2002) Stopped-flow analysis on anion binding to blue-form halorhodopsin from Natronobacterium pharaonis: comparison with the anion-uptake process during the photocycle. Biochemistry 41(7):2452–2458

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Kikukawa T, Araiso T et al (2003a) Roles of Ser130 and Thr126 in chloride binding and photocycle of pharaonis halorhodopsin. J Biochem 134(1):151–158

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Kikukawa T, Araiso T et al (2003b) Ser-130 of Natronobacterium pharaonis halorhodopsin is important for the chloride binding. Biophys Chem 104(1):209–216

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Kubo M, Aizawa T et al (2005) Role of putative anion-binding sites in cytoplasmic and extracellular channels of Natronomonas pharaonis halorhodopsin. Biochemistry 44(12):4775–4784

    Article  CAS  PubMed  Google Scholar 

  • Scharf B, Engelhard M (1994) Blue halorhodopsin from Natronobacterium pharaonis: wavelength regulation by anions. Biochemistry 33(21):6387–6393

    Article  CAS  PubMed  Google Scholar 

  • Schobert B, Lanyi JK (1982) Halorhodopsin is a light-driven chloride pump. J Biol Chem 257(17):10306–10313

    CAS  PubMed  Google Scholar 

  • Schobert B, Brown LS, Lanyi JK (2003) Crystallographic structures of the M and N intermediates of bacteriorhodopsin: assembly of a hydrogen-bonded chain of water molecules between Asp-96 and the retinal Schiff base. J Mol Biol 330(3):553–570

    Article  CAS  PubMed  Google Scholar 

  • Seki A, Miyauchi S, Hayashi S et al (2007) Heterologous expression of pharaonis halorhodopsin in Xenopus laevis oocytes and electrophysiological characterization of its light-driven Cl pump activity. Biophys J 92(7):2559–2569

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shibasaki K, Shigemura H, Kikukawa T et al (2013) Role of Thr218 in the light-driven anion pump halorhodopsin from Natronomonas pharaonis. Biochemistry 52(51):9257–9268

    Article  CAS  PubMed  Google Scholar 

  • Shibata M, Muneda N, Sasaki T et al (2005) Hydrogen-bonding alterations of the protonated Schiff base and water molecule in the chloride pump of Natronobacterium pharaonis. Biochemistry 44(37):12279–12286

    Article  CAS  PubMed  Google Scholar 

  • Shibata M, Saito Y, Demura M et al (2006) Deprotonation of Glu234 during the photocycle of Natronomonas pharaonis halorhodopsin. Chem Phys Lett 432(4–6):545–547

    Article  CAS  Google Scholar 

  • Steiner M, Oesterhelt D (1983) Isolation and properties of the native chromoprotein halorhodopsin. EMBO J 2(8):1379–1385

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sudo Y, Iwamoto M, Shimono K et al (2001) Photo-induced proton transport of pharaonis phoborhodopsin (sensory rhodopsin II) is ceased by association with the transducer. Biophys J 80(2):916–922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsuda M, Hazemoto N, Kondo M et al (1982) Two photocycles in Halobacterium halobium that lacks bacteriorhodopsin. Biochem Biophys Res Commun 108(3):970–976

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto T, Sasaki T, Fujimoto KJ et al (2012) Homotrimer formation and dissociation of pharaonis halorhodopsin in detergent system. Biophys J 102(12):2906–2915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Váró G, Lanyi JK (1995) Effects of hydrostatic pressure on the kinetics reveal a volume increase during the bacteriorhodopsin photocycle. Biochemistry 34(38):12161–12169

    Article  PubMed  Google Scholar 

  • Váró G, Brown LS, Sasaki J et al (1995a) Light-driven chloride ion transport by halorhodopsin from Natronobacterium pharaonis. I. The photochemical cycle. Biochemistry 34(44):14490–14499

    Article  PubMed  Google Scholar 

  • Váró G, Needleman R, Lanyi JK (1995b) Light-driven chloride ion transport by halorhodopsin from Natronobacterium pharaonis. II. Chloride release and uptake, protein conformation change, and thermodynamics. Biochemistry 34(44):14500–14507

    Article  PubMed  Google Scholar 

  • Váró G, Zimányi L, Fan X et al (1995c) Photocycle of halorhodopsin from Halobacterium salinarium. Biophys J 68(5):2062–2072

    Article  PubMed Central  PubMed  Google Scholar 

  • Weber HJ, Bogomolni RA (1981) P588, a second retinal-containing pigment in Halobacterium halobium. Photochem Photobiol 33(4):601–608

    Article  CAS  Google Scholar 

  • Yamashita Y, Kikukawa T, Tsukamoto T et al (2011) Expression of salinarum halorhodopsin in Escherichia coli cells: solubilization in the presence of retinal yields the natural state. Biochim Biophys Acta 1808(12):2905–2912

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Demura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kikukawa, T., Kamo, N., Demura, M. (2015). Photochemistry of Halorhodopsin. In: Yawo, H., Kandori, H., Koizumi, A. (eds) Optogenetics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55516-2_4

Download citation

Publish with us

Policies and ethics