Skip to main content

On Optogenetic Tissue Engineering on Visual Cells: A Review on Its Development, Practices and Application

  • Chapter
Optogenetics

Abstract

In the field of optogenetic tissue engineering, the most recent and widely accepted clinical research method is for a channelrhodopsin to be expressed in nerve cells through exposing these cells to light since the subjected nerve cells become stimulated, or inhibited, by light (Kehoe, Science 273:1409–1412, 1996; Bhaya, Proc Natl Acad Sci USA 98:7540–7545, 2001; Terauchi, Mol Microbiol 51:567–577, 2004). Other clinical methodologies are also in development whose purposes are to be used in controlling interactions between various proteins through exposing the said subjected nerve cells to light. When one considers applying these methods of optogenetic tissue engineering to any part of the human organs, the most relevant and effective subject organ is the eye. Visual cells of the eyes possess visual pigments made of photoreceptor proteins, and those proteins have high photo sensitivity and responsiveness. It is also a known fact that collection of data from clinical application for analysis is relatively easy since the tissues are marked in the process of tissue engineering (Corredor, J Neural Eng 10.1088/1741-2560/6/5/055001, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ballios BG, Clarke L, Coles BL et al (2012) The adult retinal stem cell is a rare cell in the ciliary epithelium whose progeny can differentiate into photoreceptors. Biol Open 1:237–246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bhaya D, Takahashi A, Grossman AR (2001) Light regulation of type IV pilus-dependent motility by chemosensor-like elements in Synechocystis PCC6803. Proc Natl Acad Sci U S A 98:7540–7545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bull ND, Martin KR (2011) Concise review: toward stem cell-based therapy for retinal neurodegenerative diseases. Stem Cells 29:1170–1175

    Article  PubMed  Google Scholar 

  • Caylak E (2007) A review of association and linkage studies for genetical analyses of learning disorders. Am J Med Genet B Neuropsychiatr Genet 144:923–943

    Article  Google Scholar 

  • Chakarova CF, Hims MM, Bolz H et al (2002) Mutations in HPRP3, a third member of pre-mRNA splicing factor genes, implicated in autosomal dominant retinitis pigmentosa. Hum Mol Genet 11:87–92

    Article  CAS  PubMed  Google Scholar 

  • Concepcion F, Mendez A, Chen J (2002) The carboxyl-terminal domain is essential for rhodopsin transport in rod photoreceptors. Vision Res 42:417–426

    Article  CAS  PubMed  Google Scholar 

  • Corredor RG, Goldberg JL (2009) Electrical activity enhances neuronal survival and regeneration. J Neural Eng. doi:10.1088/1741-2560/6/5/055001

    PubMed  Google Scholar 

  • El Yakoubi W, Borday C, Hamdache J et al (2012) Hes4 controls proliferative properties of neural stem cells during retinal ontogenesis. Stem Cells 30:2784–2795

    Article  PubMed Central  PubMed  Google Scholar 

  • Fahim AT, Daiger SP, Weleber RG (2000–2013) Retinitis pigmentosa overview gene reviews® [Internet]

    Google Scholar 

  • Gabel LA, Gibson CJ, Gruen JR et al (2010) Progress towards a cellular neurobiology of reading disability. Neurobiol Dis 38:173–180. doi:10.1016/j.nbd.2009.06.019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Galaburda AM, Kemper TL (1979) Cytoarchitectonic abnormalities in developmental dyslexia: a case study. Ann Neurol 6:94–100

    Article  CAS  PubMed  Google Scholar 

  • Galaburda AM, LoTurco J, Ramus F et al (2006) From genes to behavior in developmental dyslexia. Nat Neurosci 9:1213–1217

    Article  CAS  PubMed  Google Scholar 

  • Kaga M, Inagaki M, Uno A (1998) Event related potentials in children with leaming disabilities visual event related potentials in specific Kanji writing disabilities, Perat MV (ed.) New Developments in Child Nerology, Monduzzi Editore, Bologna, 627–633

    Google Scholar 

  • Kehoe DM, Grossman AR (1996) Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science 273:1409–1412

    Article  CAS  PubMed  Google Scholar 

  • Livingstone MS, Rosen GD et al (1991) Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. Proceedings of the National Academy of Sciences USA, 88:7943–7947

    Google Scholar 

  • McKie AB, McHale JC, Keen TJ et al (2001) Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Hum Mol Genet 10:1555–1562

    Article  CAS  PubMed  Google Scholar 

  • McNally N, Kenna P, Humphries MM et al (1999) Structural and functional rescue of murine rod photoreceptors by human rhodopsin transgene. Hum Mol Genet 8:1309–1312

    Article  CAS  PubMed  Google Scholar 

  • Murakami I, Cavanagh P (1998) A jitter after-effect reveals motion-based stabilization of vision. Nature 395:798–801

    Article  CAS  PubMed  Google Scholar 

  • Otani A, Kinder K, Ewalt K et al (2002) Bone marrow-derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis. Nat Med 8:1004–1010

    Article  CAS  PubMed  Google Scholar 

  • Paracchini S, Scerri T, Monaco AP (2007) The genetic lexicon of dyslexia. Annu Rev Genomics Hum Genet 8:57–79

    Article  CAS  PubMed  Google Scholar 

  • Rama P, Matuska S, Paganoni G et al (2010) Limbal stem cell therapy and long-term corneal regeneration. N Engl J Med 363:147–155

    Article  CAS  PubMed  Google Scholar 

  • Stein J (2003) Visual motion sensitivity and reading. Neuropsychologia 41:1785–1793

    Article  PubMed  Google Scholar 

  • Terauchi K, Montgomery BL, Grossman AR et al (2004) RcaE is a complementary chromatic adaptation photoreceptor required for green and red light responsiveness. Mol Microbiol 51:567–577

    Article  CAS  PubMed  Google Scholar 

  • Vithana EN, Abu-Safieh L, Allen MJ et al (2001) A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 19q13.4 (RP11). Mol Cell 8:375–381

    Article  CAS  PubMed  Google Scholar 

  • Wallace V (2011) Concise review: making a retina – from the building blocks to clinical applications. Stem Cells 29:412–417

    Article  CAS  PubMed  Google Scholar 

  • West EL, Gonzalez-Cordero A, Hippert C et al (2012) Defining the integration capacity of embryonic stem cell-derived photoreceptor precursors. Stem Cells 30:1425–1435

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misato Ichise .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Ichise, M., Yamada, S. (2015). On Optogenetic Tissue Engineering on Visual Cells: A Review on Its Development, Practices and Application. In: Yawo, H., Kandori, H., Koizumi, A. (eds) Optogenetics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55516-2_26

Download citation

Publish with us

Policies and ethics