Skip to main content

Neuroscientific Frontline of Optogenetics

  • Chapter
Optogenetics

Abstract

Optogenetics is a recently developed experimental technique to control the activity of neurons using light. Optogenetics shows its power to reveal the physiological role of specific neural circuits in the brain. In particular, the manipulation of specific types of neurons using optogenetics with high-accuracy timing enables us to analyze causality between neural activity and initiation of animal behaviors. However, to manipulate the activity of specific neurons in vivo, two steps need to be fulfilled to succeed in the manipulation of neural activity and control of the behavior of individual animals. Step 1: an adequate number of molecules of light-activated protein must be expressed in the cell membrane of the neurons of interest. Step 2: the optical system must illuminate the targeted neurons with enough intensity to activate the light-activated protein. In this chapter, I illuminate the tricks to succeeding in the manipulation of targeted neurons in vivo using optogenetics to control animal behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamantidis AR, Zhang F, Aravanis AM et al (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450(7168):420–424

    Article  CAS  PubMed  Google Scholar 

  • Armbruster BN, Li X, Pausch MH et al (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 104(12):5163–5168

    Article  PubMed Central  PubMed  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268

    Article  CAS  PubMed  Google Scholar 

  • Imayoshi I, Tabuchi S, Hirano K et al (2013) Light-induced silencing of neural activity in Rosa26 knock-in mice conditionally expressing the microbial halorhodopsin eNpHR2.0. Neurosci Res 75(1):53–58

    Article  CAS  PubMed  Google Scholar 

  • Ji ZG, Ito S, Honjoh T et al (2012) Light-evoked somatosensory perception of transgenic rats that express channelrhodopsin-2 in dorsal root ganglion cells. PLoS One 7(3):e32699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kravitz AV, Freeze BS, Parker PR et al (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466(7306):622–626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • LeChasseur Y, Dufour S, Lavertu G et al (2011) A microprobe for parallel optical and electrical recordings from single neurons in vivo. Nat Methods 8(4):319–325

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Ramirez S, Pang PT et al (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484(7394):381–385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madisen L, Mao T, Koch H et al (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 15(5):793–802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Magnus CJ, Lee PH, Atasoy D et al (2011) Chemical and genetic engineering of selective ion channel-ligand interactions. Science 333(6047):1292–1296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagel G, Brauner M, Liewald JF et al (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15(24):2279–2284

    Google Scholar 

  • Tanaka KF, Matsui K, Sasaki T et al (2012) Expanding the repertoire of optogenetically targeted cells with an enhanced gene expression system. Cell Rep 2(2):397–406

    Article  CAS  PubMed  Google Scholar 

  • Tsunematsu T, Kilduff TS, Boyden ES et al (2011) Acute optogenetic silencing of orexin/hypocretin neurons induces slow-wave sleep in mice. J Neurosci 31(29):10529–10539

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Gradinaru V, Adamantidis AR et al (2010) Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat Protoc 5(3):439–456

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Ting JT, Atallah HE et al (2011) Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods 8(9):745–752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Yamanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Yamanaka, A. (2015). Neuroscientific Frontline of Optogenetics. In: Yawo, H., Kandori, H., Koizumi, A. (eds) Optogenetics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55516-2_16

Download citation

Publish with us

Policies and ethics