Skip to main content
Book cover

Starch pp 291–313Cite as

Protein-Protein Interactions During Starch Biosynthesis

  • Chapter

Abstract

Starch biosynthesis requires the ordered assembly of glucose units into amylose and amylopectin from ADPglucose. Whilst amylose has a relatively simple linear structure, the synthesis of amylopectin requires the formation of regular, repeating clusters of glucan chains. These clusters have a 9 nm periodicity and comprise a crystalline, alpha helical region and an amorphous branched region, a unit which is repeated many times over to give rise to blocklets of amylopectin. Although the individual enzymes of starch biosynthesis have been studied extensively, our knowledge of the mechanisms which give rise to this highly ordered structure is limited. There is an increasing body of literature which has demonstrated that several reactions are regulated post-translationally, including via redox modulation, protein-protein interactions and protein phosphorylation. This chapter summarises our current knowledge of these mechanisms and offers a model of how they serve to coordinate the biosynthesis of amylopectin in particular.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe N, Asai H, Yago H et al (2014) Relationships between starch synthase I and branching enzyme isozymes determined using double mutant rice lines. BMC Plant Biol 14:80. doi:10.1186/1471-2229-14-80

    Article  PubMed Central  PubMed  Google Scholar 

  • Alexander RD, Morris PC (2006) A proteomic analysis of 14-3-3 binding proteins from developing barley grains. Proteomics 6:1886–1896

    Article  CAS  PubMed  Google Scholar 

  • Ávila-Castañeda A, Gutiérrez-Granados N, Ruiz-Gayosso A et al (2014) Structural and functional basis for starch binding in the SnRK1 subunits AKINβ and AKINβƴ. Front Plant Sci. doi:10.3389/fpls.2014.00199

    PubMed Central  PubMed  Google Scholar 

  • Ballicora MA, Laughlin MJ, Fu Y et al (1995) Adenosine 5’-dipho-sphate-glucose pyrophosphorylase from potato tuber. Significance of the N-terminus of the small subunit for catalytic properties and heat stability. Plant Physiol 109:245–251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bayer RG, Stael S, Rocha AG et al (2012) Chloroplast-localized protein kinases: a step forward towards a complete inventory. J Exp Bot 63:1713–1723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boyer CD, Preiss J (1979) Properties of citrate-stimulated starch synthesis catalyzed by starch synthase I of developing maize kernels. Plant Physiol 64:1039–1042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boyer CD, Preiss J (1981) Evidence for independent genetic control of the multiple forms of maize endosperm branching enzymes and starch synthases. Plant Physiol 67:1141–1145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brust H, Lehmann T, D’Hulst C et al (2014) Analysis of the functional interaction of Arabidopsis starch synthase and branching enzyme isoforms reveals that the cooperative action of SSI and Bes in glucans with polymodal chain length distribution similar to amylopectin. Plos One. doi:10.1371/journal.pone0102364

    Google Scholar 

  • Buchanan BB, Balmer Y (2005) Redox regulation: a broadening horizon. Annu Rev Plant Biol 56:187–220

    Article  CAS  PubMed  Google Scholar 

  • Cao H, James MG, Myers AM (2000) Purification and characterization of soluble starch synthases from maize endosperm. Arch Biochem Biophys 373:135–146

    Article  CAS  PubMed  Google Scholar 

  • Chen H-M, Chang S-C, Wu C-C et al (2002) Regulation of the catalytic behavior of L-form starch phosphorylase from sweet potato roots by proteolysis. Physiol Plant 114:506–515

    Article  CAS  PubMed  Google Scholar 

  • Coello P, Hey SJ, Halford NG (2011) The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. J Exp Biol 62:883–893

    CAS  Google Scholar 

  • Datta R, Chamusco KC, Choury PS (2002) Starch biosynthesis during pollen maturation is associated with altered patterns of gene expression in maize. Plant Physiol 130:1645–1656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Delatte T, Trevisan M, Parker ML et al (2005) Arabidopsis mutants Atisa1 and Atisa2 have identical phenotypes and lack the same multimeric isoamylase, which influences the branch point distribution of amylopectin during starch synthesis. Plant J 41:815–830

    Article  CAS  PubMed  Google Scholar 

  • Denyer K, Dunlap F, Thorbjørnsen T et al (1996) The major form of ADPglucose pyrophosphorylase in maize endosperm is extraplastidial. Plant Physiol 112:779–783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • D’Hulst C, Merida A (2010) The priming of storage glucan synthesis from bacteria to plants: current knowledge and new developments. New Phytol 188:13–21

    Google Scholar 

  • Dreier W, Preusser E, Griindel M (1992) The regulation of the activity of soluble starch synthase in spinach leaves by a calcium-calmodulin dependent protein kinase. Biochem Physiol Pflanz 188:81–96

    Article  CAS  Google Scholar 

  • Duncan KA, Hardin SC, Huber SC (2006) The three maize sucrose synthase isoforms differ in distribution, localization, and phosphorylation. Plant Cell Physiol 47:959–971

    Article  CAS  PubMed  Google Scholar 

  • Emes MJ, Tetlow IJ (2012) The role of heteromeric protein complexes in starch synthesis. In: Tetlow IJ (ed) Starch: origins, structure and metabolism, vol 5, SEB essential review series. Society for Experimental Biology, London, pp 255–278

    Google Scholar 

  • Fragoso S, Espindola L, Paez-Valencia J et al (2009) SnRK1 isoforms AKIN10 and AKIN11 are differentially regulated in Arabidopsis plants under phosphate starvation. Plant Physiol 149:1906–1916

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • French D (1984) Organization of starch granules. In: Whistler RL, BeMiller JN, Paschall EF (eds) Starch: chemistry and technology. Academic, Orlando, pp 183–237

    Chapter  Google Scholar 

  • Fu Y, Ballicora MA, Leykam JF et al (1998) Mechanism of reductive activation of potato tuber ADP-glucose pyrophosphorylase. J Biol Chem 273:25045–25052

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Wanat J, Stinard PS et al (1998) Characterization of dull1, a maize gene encoding for a noval starch synthase. Plant Cell 10:399–412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Geigenberger P (2011) Regulation of starch biosynthesis in response to a fluctuating environment. Plant Physiol 155:1566–1577

    Google Scholar 

  • Geigenberger P, Kolbe A, Tiessen A (2005) Redox regulation of carbon storage and partitioning in response to light and sugars. J Exp Bot 56:1469–1479

    Article  CAS  PubMed  Google Scholar 

  • Ghosh HP, Preiss J (1966) Adenosine diphosphate glucose pyrophosphorylase: a regulatory enzyme in the biosynthesis of starch in spinach leaf chloroplasts. J Biol Chem 241:4491–4504

    CAS  PubMed  Google Scholar 

  • Grimaud F, Rogniaux H, James MG et al (2008) Proteome and phosphoproteome analysis of starch granule-associated proteins from normal maize and mutants affected in starch biosynthesis. J Exp Bot 59:3395–3406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guan H-P, Preiss J (1993) Differentiation of the properties of the branching isozymes from maize (Zea mays). Plant Physiol 102:1269–1273

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785

    Article  CAS  PubMed  Google Scholar 

  • Hawker JS, Ozbun H, Ozaki E et al (1974) Interaction of spinach leaf adenosine diphosphate glucose α-1,4-glucan α-4-glucosyl transferase and α-1,4-glucan, α-1,4-glucan-6-glycosyl transferase in synthesis of branched α-glucan. Arch Biochem Biophys 160:530–551

    Article  CAS  PubMed  Google Scholar 

  • Heazlewood JL, Durek P, Hummel J et al (2008) PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res 36:D1015–D1021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hendriks JHM, Kolbe A, Gibon Y et al (2003) ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species. Plant Physiol 133:838–849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hennen-Bierwagen TA, Liu F, Marsh RS et al (2008) Starch biosynthetic enzymes from developing Zea mays endosperm associate in multisubunit complexes. Plant Physiol 146:1892–1908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hennen-Bierwagen TA, Lin Q, Grimaud F et al (2009) Proteins from multiple metabolic pathways associate with starch biosynthetic enzymes in high molecular weight complexes: a model for regulation of carbon allocation in maize amyloplasts. Plant Physiol 149:1541–1559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hizukuri S (1986) Polymodal distribution of the chain lengths of amylopectin, and its significance. Carbohydr Res 147:342–347

    Article  CAS  Google Scholar 

  • Hizukuri S, Takeda Y, Maruta N et al (1989) Molecular structures of rice starch. Carbohydr Res 189:227–235

    Article  CAS  Google Scholar 

  • Huang B, Hennen-Bierwagen TA, Myers AM (2014) Functions of multiple genes encoding ADP-glucose pyrophosphorylase subunits in maize endosperm, embryo, and leaf. Plant Physiol 164:596–611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hussain H, Mant A, Seale R et al (2003) Three forms of isoamylase contribute catalytic properties for the debranching of potato glucans. Plant Cell 15:133–149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hylton C, Smith AM (1992) The rb mutation of peas causes structural and regulatory changes in ADP glucose pyrophosphorylase from developing embryos. Plant Physiol 99:1626–1634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ikawa Y, Glover DV, Sugimoto Y et al (1978) Amylose percentage and distribution of unit chain-length of maize starches having a specific genetic background. Carbohydr Res 61:211–216

    Article  CAS  Google Scholar 

  • James MG, Robertson DS, Myers AM (1995) Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell 7:417–429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kempa S, Rozhon W, Samaj J et al (2007) A plastid-localized glycogen synthase kinase 3 modulates stress tolerance and carbohydrate metabolism. Plant J 49:1076–1090

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kirchberger S, Leroch M, Huynen MA et al (2007) Molecular and biochemical analysis of the plastidic ADP-glucose transporter (ZmBT1) from Zea mays. J Biol Chem 282:22481–22491

    Article  CAS  PubMed  Google Scholar 

  • Klucinec JD, Thompson DB (2002) Structure of amylopectins from ae-containing maize starches. Cereal Chem 79:19–23

    Article  CAS  Google Scholar 

  • Kolbe A, Tiessen A, Schluepmann H et al (2005) Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. Proc Natl Acad Sci U S A 102:11118–11123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koroleva OA, Tomlinson ML, Leader D et al (2005) High-throughput protein localization in Arabidopsis using Agrobacterium-mediated transient expression of GFP-ORF fusions. Plant J 41:162–174

    Article  CAS  PubMed  Google Scholar 

  • Kötting O, Kossmann J, Zeeman SC et al (2010) Regulation of starch metabolism: the age of enlightenment? Curr Opin Plant Biol 13:321–329

    Article  PubMed  Google Scholar 

  • Kubo A, Colleoni C, Dinges JR et al (2010) Functions of heteromeric and homomeric isoamylase-type starch-debranching enzymes in developing maize endosperm. Plant Physiol 153:956–969

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leterrier M, Holappa L, Broglie K et al (2008) Cloning, characterisation and comparative analysis of astarch synthase IV gene in wheat: functional and evolutionary implications. BMC Plant Biol 8:98

    Google Scholar 

  • Lin Q, Huang B, Zhang M et al (2012) Functional interactions between starch synthase III and isoamylase-type starch-debranching enzyme in maize endosperm. Plant Physiol 158:679–692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu F, Makhmoudova A, Lee EA et al (2009) The amylose extender mutant of maize conditions novel protein-protein interactions between starch biosynthetic enzymes in amyloplasts. J Exp Bot 60:4423–4440

    Article  CAS  PubMed  Google Scholar 

  • Liu D-R, Huang W-X, Cai X-L (2013) Oligomerization of rice granule-bound starch synthase 1 modulates its activity regulation. Plant Sci 210:141–150

    Google Scholar 

  • Liu F, Ahmed Z, Makhmoudova A et al (2012a) Allelic variants of the amylose extender mutation of maize demonstrate phenotypic variation in starch structure resulting from modified protein-protein interactions. J Exp Bot 63:1167–1183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu F, Romanova N, Lee EA et al (2012b) Glucan affinity of starch synthase IIa determines binding of starch synthase I and starch-branching enzyme IIb to starch granules. Biochem J 448:373–387

    Article  CAS  PubMed  Google Scholar 

  • Lohrig K, Muller B, Davydova J et al (2009) Phosphorylation site mapping of soluble proteins: bioinformatical filtering reveals potential plastidic phosphoproteins in Arabidopsis thaliana. Planta 229:1123–1134

    Article  CAS  PubMed  Google Scholar 

  • Lunn JE, Feil R, Hendriks JHM et al (2006) Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem J 397:139–148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lunn JE, Delorge I, Figueroa CM et al (2014) Trehalose metabolism in plants. Plant J 79:544–567

    Article  CAS  PubMed  Google Scholar 

  • Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252:1162–1164

    Article  CAS  PubMed  Google Scholar 

  • Makhmoudova A, Williams D, Brewer D et al (2014) Identification of multiple phosphorylation sites on maize endosperm starch branching enzyme Iib, a key enzyme in amylopectin biosynthesis. J Biol Chem 289:9233–9246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martinez-Barajas E, Delatte T, Schluepmann H et al (2013) Wheat grain development is characterized by remarkable trehalose 7-phosphate accumulation pregrain filling: tissue distribution and relationship to SNF1-related protein kinase1 activity. Plant Physiol 156:373–381

    Article  Google Scholar 

  • McBride A, Ghilagaber S, Nikolaev A et al (2009) The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor. Cell Metab 9:23–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michalska J, Zauber H, Buchanan BB et al (2009) NTRC links built-in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts. Proc Natl Acad Sci U S A 106:9908–9913

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morell MK, Kosar-Hashemi B, Cmiel M et al (2003) Barley sex6 mutants lack starch synthase IIa activity and contain a starch with novel properties. Plant J 34:173–185

    Article  CAS  PubMed  Google Scholar 

  • Mu-Forster C, Huang R, Powers JR et al (1996) Physical association of starch biosynthetic enzymes with starch granules of maize endosperm. Granule-associated forms of starch synthase I and starch branching enzyme II. Plant Physiol 111:821–829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakamura Y, Ono M, Utsumi C et al (2012) Functional interaction between plastidial starch phosphorylase and starch branching enzymes from rice during the synthesis of branched maltodextrins. Plant Cell Physiol 53(5):869–878

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Aihara S, Crofts N et al (2014) In vitro studies of enzymatic properties of starch synthases and interactions between starch synthase I and starch branching enzymes from rice. Plant Sci 224:1–8

    Article  CAS  PubMed  Google Scholar 

  • Nishi A, Nakamura Y, Tanaka N et al (2001) Biochemical and genetic effects of amylose-extender mutation in rice endosperm. Plant Physiol 127:459–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pollock C, Preiss J (1980) The citrate-stimulated starch synthase of starchy maize kernels: purification and properties. Arch Biochem Biophys 204:578–588

    Article  CAS  PubMed  Google Scholar 

  • Preiss J (1991) Biology and molecular biology of starch synthesis and its regulation. In: Miflin BJ (ed) Oxford surveys of cellular and molecular biology, vol 7. Oxford University Press, Oxford, pp 59–114

    Google Scholar 

  • Reiland S, Messerli G, Baerenfaller K et al (2009) Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol 150:889–903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roach PJ, DePaoli-Roach AA, Hurley TD et al (2012) Glycogen and its metabolism: some new developments and old themes. Biochem J 441:763–787

    Article  CAS  PubMed  Google Scholar 

  • Robin JP, Mercier C, Charbonniere R et al (1974) Lintnerized starches: gel filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch. Cereal Chem 51:389–406

    CAS  Google Scholar 

  • Roldán L, Wattebled F, Lucas MM et al (2007) The phenotype of soluble starch synthase IV defective mutant of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. Plant J 49:492–504

    Article  PubMed  Google Scholar 

  • Satoh H, Shibahara K, Tokunaga T (2008) Mutation of the plastidial alpha-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. Plant Cell 20:1833–1849

    Google Scholar 

  • Schiefer S, Lee EYC, Whelan WJ (1973) Multiple forms of starch synthase in maize varieties as revealed by disc-gel electrophoresis and activity. Fed Eur Biochem Soc Lett 30:129

    Article  CAS  Google Scholar 

  • Schiefer S, Lee EYC, Whelan WJ (1978) The requirement for a primer in the in vitro synthesis of polysaccharide by sweet corn (1 → 4)-α-D-glucan synthase. Carbohydr Res 61:239–252

    Article  CAS  Google Scholar 

  • Schliebner I, Pribil M, Zühlke J et al (2008) A survey of chloroplast protein kinases and phosphatases in Arabidopsis thaliana. Curr Genomics 9:184–190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sehnke PC, Ferl RJ (2002) 14-3-3 protein: effectors of enzyme function. Annu Plant Rev 7:53–76

    CAS  Google Scholar 

  • Sehnke PC, Chung H-J, Wu K et al (2001) Regulation of starch accumulation by granule-associated plant 14-3-3 proteins. Proc Natl Acad Sci U S A 98:765–770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sheen J (1991) Molecular mechanisms underlying the differential expression of maize pyruvate, orthophosphate dikinase genes. Plant Cell 3:225–245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shure M, Wessler S, Fedoroff N (1983) Molecular identification and isolation of the waxy locus in maize. Cell 35:225–233

    Article  CAS  PubMed  Google Scholar 

  • Sikka VK, Choi S, Kavakli IH et al (2001) Subcellular compartmentation and allosteric regulation of the rice endosperm. ADPglucose pyrophosphorylase. Plant J 161:461–468

    CAS  Google Scholar 

  • Subasinghe RM, Liu F, Polack UC et al (2014) Multimeric states of starch phosphorylase determine protein-protein interactions with starch biosynthetic enzymes in amyloplasts. Plant Physiol Biochem 83:168–179

    Article  CAS  PubMed  Google Scholar 

  • Szydlowski N, Ragel P, Raynaud S (2009) Starch granule initiation in Arabidopsis requires the presence of either class IV or class III starch synthases. Plant Cell 21:2443–2457

    Google Scholar 

  • Tetlow IJ, Davies EJ, Vardy KA et al (2003) Subcellular localization of ADPglucose pyrophosphorylase in developing wheat endosperm and analysis of a plastidial isoform. J Exp Bot 54:715–725

    Article  CAS  PubMed  Google Scholar 

  • Tetlow IJ, Wait R, Lu Z et al (2004) Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein-protein interactions. Plant Cell 16:694–708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tetlow IJ, Beisel KG, Cameron S et al (2008) Analysis of protein complexes in amyloplasts reveals functional interactions among starch biosynthetic enzymes. Plant Physiol 146:1878–1891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tiessen A, Hendriks JHM, Stitt M et al (2002) Starch synthesis in potato tuber is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase. Plant Cell 14:2191–2213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Umemoto T, Aoki N (2005) Single-nucleotide polymorphisms in rice starch synthase IIa that alter starch gelatinisation and starch association of the enzyme. Funct Plant Biol 32:763–768

    Article  CAS  Google Scholar 

  • Utsumi Y, Utsumi C, Sawada T et al (2011) Functional diversity of isoamylase oligomers: the ISA1 homo-oligomer is essential for amylopectin biosynthesis in rice endosperm. Plant Physiol 156:61–77

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Wijk KJ, Friso G, Walther D et al (2014) Meta-analysis of Arabidopsis thaliana phosphor-proteomics data reveals compartmentalization of phosphorylation motifs. Plant Cell 26:2367–2389. http://dx.doi.org/10.1105/tpc.114.125815

  • Walley JW, Shen Z, Sartor R et al (2013) Reconstruction of protein networks from an atlas of maize seed proteotypes. PNAS 110:E4808–E4817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang S-J, Yeh K-W, Tsai C-Y (2001) Regulation of starch granule-bound starch synthase I gene expression by circadian clock and sucrose in the source tissue of sweet potato. Plant Sci 161:635–644

    Article  CAS  Google Scholar 

  • Wattebled F, Planchot V, Dong Y et al (2008) Further evidence for the mandatory nature of polysaccharide debranching for the aggregation of semicrystalline starch and for overlapping functions of debranching enzymes in Arabidopsis leaves. Plant Physiol 148:1309–1323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamamori M, Fujita S, Hayakawa K et al (2000) Genetic elimination of a starch granule protein, SGP-1, of wheat generates an altered starch with apparent high amylose. Theor Appl Genet 101:21–29

    Article  CAS  Google Scholar 

  • Yeh JY, Garwood DL, Shannon JC (1981) Characterization of starch from maize endosperm mutants. Starch-Starke 33:222–230

    Article  CAS  Google Scholar 

  • Young G-H, Chen H-M, Lin C-T et al (2006) Site-specific phosphorylation of L-form starch phosphorylase by the protein kinase activity from sweet potato roots. Planta 223:468–478

    Article  CAS  PubMed  Google Scholar 

  • Zeeman SC, Tiessen A, Pilling E et al (2002) Starch synthesis in Arabidopsis; granule synthesis, composition, and structure. Plant Physiol 129:516–529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang X, Colleoni C, Ratushna V et al (2004) Molecular characterization demonstrates that the Zea mays gene sugary2 codes for the starch synthase isoform SSIIa. Plant Mol Biol 54:865–879

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Cheng Z, Zhang X et al (2011) Double repression of soluble starch synthase genes SSIIa and SSIIIa in rice (Oryza sativa L.) uncovers interactive effects on the physiochemical properties of starch. Genome 54:448–459

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Natural Sciences and Engineering Research Council and the Ontario Ministry of Agriculture, Food and Rural Affairs. We thank Mr. Ian Smith for assistance with some of the diagrams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian J. Tetlow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Tetlow, I.J., Liu, F., Emes, M.J. (2015). Protein-Protein Interactions During Starch Biosynthesis. In: Nakamura, Y. (eds) Starch. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55495-0_8

Download citation

Publish with us

Policies and ethics