Skip to main content

Manipulation of Rice Starch Properties for Application

  • Chapter
Starch

Abstract

Starches that accumulate in the storage organs of green plants are used for industrial applications as well as carbohydrate source for most of organisms. We isolated a lot of rice mutant lines of starch biosynthesis-related enzymes (isozymes) for understanding the starch biosynthesis of green plants. The starches in the endosperm of rice mutant lines were quite different from those of the wild-type. In an attempt to clarify the redundancies and the functional interactions among multiple isozymes, we are trying to isolate many combinations of multiple mutant lines by using genetic procedures. Analyses of several mutant lines show that a deficiency in a specific isozyme is compensated for by other isozymes. The widespread variation in starches should help diversify their application for food and industrial use. It is necessary to analyze the details of starch structure and physicochemistry of these starches and clarify the relationships among these. This chapter summarizes the effects of the deficiencies of starch biosynthetic isozymes on the chain-length distribution of amylopectin, the amylose content, and the gelatinization properties. I also summarize the effects of the deficiency of isozymes on the important agricultural traits, such as fertility of the seeds, starch content, and seed morphology. The possibilities for use of food and industrial purposes and trials for improvement of agricultural traits by backcrossing with elite cultivars are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe N, Nakamura Y, Fujita N (2013) Thermal properties, morphology of starch granules, and crystallinity of endosperm starch in SSI and BE isozyme double mutant lines. J Appl Glycosci 60:171–176

    Article  CAS  Google Scholar 

  • Abe N, Asai H, Yago H et al (2014) Relationships between starch synthase I and branching enzyme isozymes determined using double mutant rice lines. BMC Plant Biol 14(80):1–12

    Google Scholar 

  • Asai H, Abe N, Matsushima R et al (2014) Deficiencies in both starch synthase (SS) IIIa and branching enzyme IIb lead to a significant increase in amylose in SSIIa inactive japonica rice seeds. J Exp Bot 65:5497–5507

    Article  PubMed Central  PubMed  Google Scholar 

  • Asatsuma S, Sawada C, Kitajima A et al (2006) α-Amylase affects starch accumulation in rice grains. J Appl Glycosci 53:187–192

    Article  CAS  Google Scholar 

  • Baba T, Nishihara M, Mizuno K et al (1993) Identification, cDNA cloning, and gene expression of soluble starch synthase in rice (Oryza sativa L.) immature seeds. Plant Physiol 103:565–573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Banks W, Greenwood CT, Muir DD (1974) Studies on starches of high amylose content: part 17. A review of current concepts. Starch 26:289–300

    Article  CAS  Google Scholar 

  • Bertoft E (1991) Investigation of the fine structure of alpha-dextrins derived from amylopectin and their relation to the structure of waxy-maize starch. Carbohydr Res 212:229–244

    Article  CAS  PubMed  Google Scholar 

  • Blauth SL, Yao Y, Klucinec JD et al (2001) Identification of Mutator insertional mutants of starch-branching enzyme 2a in corn. Plant Physiol 125:1396–1405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao H, James MG, Myers AM (2000) Purification and characterization of soluble starch synthases from maize endosperm. Arch Biochem Biophys 373:135–146

    Article  CAS  PubMed  Google Scholar 

  • Clarke BR, Denyer K, Jenner CF, Smih AM (1999) The relationship between the rate of starch synthesis, the adenosine 5′-diphosphoglucose concentration and the amylose content of starch in developing pea embryos. Planta 209:324–329

    Article  CAS  PubMed  Google Scholar 

  • Crofts N, Abe K, Aihara S et al (2012) Lack of starch synthase IIIa and high expression of granule-bound starch synthase I synergistically increase the apparent amylose content in rice endosperm. Plant Sci 193–194:62–69

    Article  PubMed  Google Scholar 

  • Dauvillée D, Colleoni C, Mouille G et al (2001) Biochemical characterization of wild-type and mutant isoamylases of Chlamydomonas reinhardtii supports a function of the multimeric enzyme organization in amylopectin maturation. Plant Physiol 125:1723–1731

    Article  PubMed Central  PubMed  Google Scholar 

  • Delatte T, Trevisan M, Parker ML, Zeeman SC (2005) Arabidopsis mutants Atisa1 and Atisa2 have identical phenotypes and lack the same multimeric isoamylase, which influences the branch point distribution of amylopectin during starch synthesis. Plant J 41:815–830

    Article  CAS  PubMed  Google Scholar 

  • Fujita N (2013) Denpunhenitaimai no kaiseki to riyou. Kagaku to Seibutsu. J Soc Biosci Biotechnol Agrochem 51:400–407

    CAS  Google Scholar 

  • Fujita N, Hasegawa H, Taira T (2001) The isolation and characterization of waxy mutant of diploid wheat (Triticum monococcum L.). Plant Sci 160:595–602

    Article  CAS  PubMed  Google Scholar 

  • Fujita N, Kubo A, Suh D-S et al (2003) Antisense inhibition of isoamylase alters the structure of amylopectin and the physicochemical properties of starch in rice endosperm. Plant Cell Physiol 44:607–618

    Article  CAS  PubMed  Google Scholar 

  • Fujita N, Yoshida M, Asakura N et al (2006) Function and characterization of starch synthase I using mutants in rice. Plant Physiol 140:1070–1084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujita N, Yoshida M, Kondo T et al (2007) Characterization of SSIIIa-deficient mutants of rice (Oryza sativa L.): the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiol 144:2009–2023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujita N, Goto S, Yoshida M et al (2008) The function of rice starch synthase I expressed in E. coli. J Appl Glycosci 55:167–172

    Article  CAS  Google Scholar 

  • Fujita N, Toyosawa Y, Utsumi Y et al (2009) Characterization of PUL-deficient mutants of rice (Oryza sativa L.) and the function of PUL on the starch biosynthesis in the rice endosperm. J Exp Bot 60:1009–1023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujita N, Satoh R, Hayashi A et al (2011) Starch biosynthesis in rice endosperm requires the presence of either starch synthase I or IIIa. J Exp Bot 62:4819–4831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujita N, Hanashiro I, Suzuki S et al (2012) Elongated phytoglycogen chain-length in transgenic rice endosperm expressing active starch synthase IIa affects the altered solubility and crystallinity of the storage α-glucan. J Exp Bot 63:5859–5872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujita N, Hanashiro I, Toyosawa Y, Nakamura Y (2013) Functional study of rice starch synthase I (SSI) by using double mutant with lowered activities of SSI and isoamylase1. J Appl Glycosci 60:45–51

    Article  CAS  Google Scholar 

  • Hakata M, Kuroda M, Miyashita T et al (2012) Suppression of α-amylase genes improves quality of rice grain ripened under high temperature. Plant Biotechnol J 10:1110–1117

    Article  CAS  PubMed  Google Scholar 

  • Hanashiro I, Itoh K, Kuratomi Y et al (2008) Granule-bound starch synthase I is responsible for biosynthesis of extra-long unit chains of amylopectin in rice. Plant Cell Physiol 49:925–933

    Article  CAS  PubMed  Google Scholar 

  • Hanashiro I, Higuchi T, Aihara S et al (2011) Structure of starches from rice mutants deficient in the starch synthase isozyme SSI or SSIIIa. Biomacromolecules 12:1621–1628

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Kodama M, Nakamura Y et al (2015) Thermal and pasting properties, morphology of starch granules, and crystallinity of endosperm starch in the rice SSI and SSIIIa double-mutants. J Appl Glycosci (in press)

    Google Scholar 

  • Hirano HY, Sano Y (1998) Enhancement of Wx gene expression and the accumulation of amylose in response to cool temperatures during seed development in rice. Plant Cell Physiol 39:807–812

    Article  CAS  Google Scholar 

  • Hirochika H (2001) Contribution of the Tos17 retrotransposon to rice functional genomics. Curr Opin Plant Biol 4:118–122

    Article  CAS  PubMed  Google Scholar 

  • Hirose T, Terao T (2004) A comprehensive expression analysis of the starch synthase gene family in rice (Oryza sativa L.). Planta 220:9–16

    Article  CAS  PubMed  Google Scholar 

  • Hizukuri S (1986) Polymodal distribution of the chain-lengths of amylopectins, and its significance. Carbohydr Res 147:342–347

    Article  CAS  Google Scholar 

  • Hizukuri S (1995) Starch, analytical aspects. In: Eliasson A-E (ed) Carbohydrates in food. Marcel Dekker, New York, pp 347–429

    Google Scholar 

  • Horibata T, Nakamoto M, Fuwa H, Inouchi N (2004) Structural and physicochemical characteristics of endosperm starches of rice cultivars recently bred in Japan. J Appl Glycosci 51:303–313

    Article  CAS  Google Scholar 

  • Hussain H, Mant A, Seale R et al (2003) Three isoforms of isoamylase contribute different catalytic properties for the debranching of potato glucans. Plant Cell 15:133–149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inouchi N, Glover DV, Sugimoto Y, Fuwa H (1991) DSC characteristics of gelatinization of starches of single-, double-, and triple-mutants and their normal counterpart in the inbred Oh43 maize (Zea mays L.) background. Starch 43:468–472

    Article  CAS  Google Scholar 

  • Inouchi N, Hibiu H, Li T, Horibata T et al (2005) Structure and properties of endosperm starches from cultivated rice of Asia and other countries. J Appl Glycosci 52:239–246

    Article  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Isshiki M, Morino K, Nakajima M et al (1998) A naturally occurring functional allele of the rice waxy locus has a GT to TT mutation at the 5′ splice site of the first intron. Plant J 15:133–138

    Article  CAS  PubMed  Google Scholar 

  • James MG, Robertson DS, Myers AM (1995) Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell 7:417–429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jane J-L, Wong K-S, McPherson AE (1997) Branch-structure difference in starches of A- and B-type X-ray patterns revealed by their Naegeli dextrins. Carbohydr Res 300:219–227

    Article  CAS  Google Scholar 

  • Jane JL, Ao Z, Duvick SA et al (2003) Structures of amylopectin and starch granules: how are they synthesized? J Appl Glycosci 50:167–172

    Article  CAS  Google Scholar 

  • Jiang H, Horner HT, Pepper TM et al (2010) Formation of elongated starch granules in high-amylose maize. Carbohydr Polym 80:534–539

    Google Scholar 

  • Kubo A, Fujita N, Harada K et al (1999) The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiol 121:399–409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kubo A, Akdogan G, Nakaya M et al (2010a) Structure, physical, and digestive properties of starch from wx ae double-mutant rice. J Agric Food Chem 58:4463–4469

    Article  CAS  PubMed  Google Scholar 

  • Kubo A, Colleoni C, Dinges JR et al (2010b) Functions of heteromeric and homomeric isoamylase-type starch-debranching enzymes in developing maize endosperm. Plant Physiol 153:956–969

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larkin PD, Park WD (1999) Transcript accumulation and utilization of alternate and non-consensus splice sites in rice granule-bound starch synthase are temperature-sensitive and controlled by a single-nucleotide polymorphism. Plant Mol Biol 40:719–727

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Li D, Du X et al (2011) The barley amo1 locus is tightly linked to the starch synthase IIIa gene and negatively regulates expression of granule-bound starch synthetic genes. J Exp Bot 62:5217–5231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lloyd JR, Springer F, Buleon A, Muller-Rober B, Willmitzer L, Kossmann J (1999) The influence of alterations in ADP-glucose pyrophosphorylase activities on starch structure and composition in potato tubers. Planta 209:230–238

    Article  CAS  PubMed  Google Scholar 

  • Matsushima R, Maekawa M, Fujita N, Sakamoto W (2010) A rapid, direct observation method to isolate mutants with defects in starch grain morphology in rice. Plant Cell Physiol 51:728–741

    Article  CAS  PubMed  Google Scholar 

  • Matsushima R, Yamashita J, Kariyama S et al (2013) A phylogenetic re-evaluation of morphological variations of starch grains among Poaceae species. J Appl Glycosci 60:37–44

    Article  Google Scholar 

  • Mizuno K, Kawasaki T, Shimada H et al (1993) Alteration of the structural properties of starch components by the lack of an isoform of starch branching enzyme in rice seeds. J Biol Chem 268:19084–19091

    CAS  PubMed  Google Scholar 

  • Nagato K, Ebara M (1965) Effects of high temperature during ripening period on the development and the quality of rice kernels. Jpn J Crop Sci 34:59–66

    Article  Google Scholar 

  • Nakamura Y (1998) Some properties of starch debranching enzymes and their possible role in amylopectin biosynthesis. Plant Sci 121:1–18

    Article  Google Scholar 

  • Nakamura Y (2002) Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm as a model tissue. Plant Cell Physiol 43:718–725

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Umemoto T, Takahata Y et al (1996) Changes in structure of starch and enzyme activities affected by sugary mutant in developing rice endosperm: possible role of starch debranching enzyme (R-enzyme) in amylopectin biosynthesis. Physiol Plant 97:491–498

    Article  CAS  Google Scholar 

  • Nakamura Y, Kubo A, Shimamune T et al (1997) Correlation between activities of starch debranching enzyme and α-polyglucan structure in endosperms of sugary-1 mutants of rice. Plant J 12:143–153

    Article  CAS  Google Scholar 

  • Nakamura Y, Sakurai A, Inaba Y et al (2002) The fine structure of amylopectin in endosperm from Asian cultivated rice can be largely classified into two classes. Starch 54:117–131

    Article  CAS  Google Scholar 

  • Nakamura Y, Francisco BP Jr, Hosaka Y et al (2005) Essential amino acids of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice cultivars. Plant Mol Biol 58:213–227

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Utsumi Y, Sawada T et al (2010) Characterization of the reactions of starch branching enzymes from rice endosperm. Plant Cell Physiol 51:776–794

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Aihara S, Crofts N et al (2014) In vitro studies of enzymatic properties of starch synthases and interacting reactions between starch synthase I and starch branching enzymes from rice. Plant Sci 224:1–8

    Article  CAS  PubMed  Google Scholar 

  • Nishi A, Nakamura Y, Tanaka N, Satoh H (2001) Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol 127:459–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohdan T, Francisco JPB, Sawada T et al (2005) Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot 56:3229–3244

    Article  CAS  PubMed  Google Scholar 

  • Sano Y (1984) Differential regulation of waxy gene expression in rice endosperm. Theor Appl Genet 68:467–473

    Article  CAS  PubMed  Google Scholar 

  • Satoh H, Omura T (1979) Induction of mutation by treatment of fertilized egg cell with N-methyl-N-nitrosourea in rice. J Fac Agric Kyushu Univ 24:165–174

    CAS  Google Scholar 

  • Satoh H, Nishi A, Yamashita K et al (2003) Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiol 133:1111–1121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Satoh H, Shibahara K, Tokunaga T et al (2008) Plastidic α-glucan phosphorylase mutation dramatically affects the synthesis and structure of starch in rice endosperm. Plant Cell 20:1833–1849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shannon JC, Garwood DL (1984) Genetics and physiology of starch development. In: Whistler RL, BeMiller JN, Paschal EF (eds) Starch, 2nd edn. Academic, New York, pp 25–86

    Google Scholar 

  • Singh N, Inouchi N, Nishinari K (2006) Structural, thermal and viscoelastic characteristics of starches separated from normal, sugary and waxy maize. Food Hydrocoll 20:923–935

    Article  CAS  Google Scholar 

  • Takeda Y, Hizukuri S, Juliano BO (1987) Structures of rice amylopectins with low and high affinities for iodine. Carbohydr Res 168:79–88

    Article  CAS  Google Scholar 

  • Tanaka N, Fujita N, Nishi A et al (2004) The structure of starch can be manipulated by changing the expression levels of starch branching enzyme IIb in rice endosperm. Plant Biotechnol J 2:507–516

    Article  CAS  PubMed  Google Scholar 

  • Tashiro T, Wardlaw IF (1991) The effect of high temperature on kernel dimensions and the type and occurrence of kernel damage in rice. Aust J Agric Res 42:485–496

    Article  Google Scholar 

  • Tateoka T (1962) Starch grains of endosperm in grass systematics. Bot Mag Tokyo 75:377–383

    Article  Google Scholar 

  • Tsai CY (1974) The function of waxy locus in starch synthesis in maize endosperm. Biochem Genet 11:83–96

    Article  CAS  PubMed  Google Scholar 

  • Umemoto T, Nakamura Y, Satoh H, Terashima K (1999) Differences in amylopectin structure between two rice varieties in relation to the effects of temperature during grain-filling. Starch 51:58–62

    Article  CAS  Google Scholar 

  • Umemoto T, Yano M, Satoh H et al (2002) Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties. Theor Appl Genet 104:1–8

    Article  CAS  PubMed  Google Scholar 

  • Utsumi Y, Utsumi C, Sawada T et al (2011) Functional diversity of isoamylase oligomers: the ISA1 homo-oligomer is essential for amylopectin biosynthesis in rice endosperm. Plant Physiol 156:61–77

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang YJ, White P, Pollak L, Jane J-L (1993a) Characterization of starch structures of 17 maize endosperm mutant genotype with Oh43 inbred line background. Cereal Chem 70:171–179

    CAS  Google Scholar 

  • Wang YJ, White P, Pollak L, Jane J-L (1993b) Amylopectin and intermediate materials in starches from mutant genotypes of the Oh43 inbred line. Cereal Chem 70:521–525

    CAS  Google Scholar 

  • Wang ZY, Zheng FQ, Shen GZ et al (1995) The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J 7:613–622

    Article  CAS  PubMed  Google Scholar 

  • Wattebled F, Dong Y, Dumez S et al (2005) Mutants of Arabidopsis lacking a chloroplastic isoamylase accumulate phytoglycogen and an abnormal form of amylopectin. Plant Physiol 138:184–195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wong K-S, Kubo A, Jane J-L et al (2003) Structures and properties of amylopectin and phytoglycogen in the endosperm of sugary-1 mutants of rice. J Cereal Sci 37:139–149

    Article  CAS  Google Scholar 

  • Yamakawa H, Hirose T, Kuroda M, Yamaguchi T (2007) Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol 144:258–277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yun MS, Kawagoe Y (2010) Septum formation in amyloplasts produces compound granules in the rice endosperm and is regulated by plastid division proteins. Plant Cell Physiol 51:1469–1479

    Article  CAS  PubMed  Google Scholar 

  • Yun MS, Umemoto T, Kawagoe Y (2011) Rice debranching enzyme isoamylase3 facilitates starch metabolism and affects plastid morphogenesis. Plant Cell Physiol 52:1068–1082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang H, Duan L, Dai JS et al (2014) Major QTLs reduce the deleterious effects of high temperature on rice amylose content by increasing splicing efficiency of Wx pre-mRNA. Theor Appl Genet 127:273–282

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries, and Food Industry and Akita Prefectural University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoko Fujita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Fujita, N. (2015). Manipulation of Rice Starch Properties for Application. In: Nakamura, Y. (eds) Starch. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55495-0_10

Download citation

Publish with us

Policies and ethics