Skip to main content

Fine Structure of Amylopectin

  • Chapter
Starch

Abstract

Starch granules consist of two major polyglucans, namely, branched amylopectin and essentially linear amylose. In all nonmutant starches, amylopectin is the major component and is responsible for the internal structure of starch granules, which is the native, semicrystalline form of starch. The granules, irrespective of the plant source, consist of granular rings of alternating amorphous and semicrystalline polymers. On a smaller scale, blocklets as well as crystalline and amorphous lamellae have been identified. Amylopectin is generally accepted as the contributor to the lamellar structure, but the nature of blocklets is only beginning to be resolved. Amylopectin consists of numerous chains of glucosyl units that are divided into short and long chains. These chains are organized as clusters that have been isolated by using endo-acting enzymes, and the fine structure of the clusters have been investigated. The clusters consist of still smaller, tightly branched units known as building blocks. The organization of the clusters and building blocks in the macromolecular structure of amylopectin is to date uncertain, and two schools exist at present suggesting that amylopectin either has a treelike branched cluster structure or a building block backbone structure. The structural features of amylopectin and the two models presently in debate are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberle T, Burchard W, Vorwerg W et al (1994) Conformational contributions of amylose and amylopectin to the structural properties of starches from various sources. Starch-Starke 46:329–335

    CAS  Google Scholar 

  • Akai H, Yokobayashi K, Misaki A et al (1971) Structural analysis of amylopectin using Pseudomonas isoamylase. Biochim Biophys Acta 252:427–431

    CAS  PubMed  Google Scholar 

  • Aoki N, Umemeto T, Yoshida S et al (2006) Genetic analysis of long chain synthesis in rice amylopectin. Euphytica 151:225–234

    CAS  Google Scholar 

  • Atkin NJ, Abeysekera RM, Cheng SL et al (1998) An experimentally-based predictive model for the separation of amylopectin subunits during starch gelatinization. Carbohydr Polym 36:173–192

    CAS  Google Scholar 

  • Atkin NJ, Cheng SL, Abeysekera RM et al (1999) Localisation of amylose and amylopectin in starch granules using enzyme-gold labelling. Starch-Starke 51:163–172

    CAS  Google Scholar 

  • Atwell WA, Hoseney RC, Lineback DR (1980) Debranching of wheat amylopectin. Cereal Chem 57:12–16

    CAS  Google Scholar 

  • Babor K, Kalác V, Tihlárik K (1968) Structure of amylopectin (I). Preparation and structure of α-amylase macrodextrin. Chem Zvesti 22:321–326

    CAS  Google Scholar 

  • Baker AA, Miles MJ, Helbert W (2001) Internal structure of the starch granule revealed by AFM. Carbohydr Res 330:249–256

    CAS  PubMed  Google Scholar 

  • Baldwin PM, Adler J, Davies MC et al (1998) High resolution imaging of starch granule surfaces by atomic force microscopy. J Cereal Sci 27:255–265

    Google Scholar 

  • Ball S, Guan H-P, James M et al (1996) From glycogen to amylopectin: a model for the biogenesis of the plant starch granule. Cell 86:349–352

    CAS  PubMed  Google Scholar 

  • Banks W, Greenwood CT (1973) Molecular properties of the starch components and their relation to the structure of the granule. Ann NY Acad Sci 210:17–33

    CAS  PubMed  Google Scholar 

  • Bender H, Siebert R, Stadler-Szöke A (1982) Can cyclodextrin glycosyl transferase be useful for the investigation of the fine structure of amylopectins?: characterisation of highly branched clusters isolated from digests with potato and maize starches. Carbohydr Res 110:245–259

    CAS  Google Scholar 

  • Bertoft E (1986) Hydrolysis of amylopectin by the alpha-amylase of B. subtilis. Carbohydr Res 149:379–387

    CAS  Google Scholar 

  • Bertoft E (1989) Partial characterisation of amylopectin alpha-dextrins. Carbohydr Res 189:181–193

    CAS  Google Scholar 

  • Bertoft E (1991) Investigation of the fine structure of alpha-dextrins derived from amylopectin and their relation to the structure of waxy-maize starch. Carbohydr Res 212:229–244

    CAS  PubMed  Google Scholar 

  • Bertoft E (2004a) Lintnerisation of two amylose-free starches of A- and B-crystalline types, respectively. Starch-Starke 56:167–180

    CAS  Google Scholar 

  • Bertoft E (2004b) On the nature of categories of chains in amylopectin and their connection to the super helix model. Carbohydr Polym 57:211–224

    CAS  Google Scholar 

  • Bertoft E (2007a) Composition of building blocks in clusters from potato amylopectin. Carbohydr Polym 70:123–136

    CAS  Google Scholar 

  • Bertoft E (2007b) Composition of clusters and their arrangement in potato amylopectin. Carbohydr Polym 68:433–446

    CAS  Google Scholar 

  • Bertoft E (2013) On the building block and backbone concepts of amylopectin structure. Cereal Chem 90:294–311

    CAS  Google Scholar 

  • Bertoft E, Koch K (2000) Composition of chains in waxy-rice starch and its structural units. Carbohydr Polym 41:121–132

    CAS  Google Scholar 

  • Bertoft E, Seetharaman K (2012) Starch structure. In: Tetlow I (ed) Starch: origins, structure and metabolism. Society of Experimental Biology, London, pp 1–27

    Google Scholar 

  • Bertoft E, Zhu Q, Andtfolk H et al (1999) Structural heterogeneity in waxy-rice starch. Carbohydr Polym 38:349–359

    CAS  Google Scholar 

  • Bertoft E, Piyachomkwan K, Chatakanonda P et al (2008) Internal unit chain composition in amylopectins. Carbohydr Polym 74:527–543

    CAS  Google Scholar 

  • Bertoft E, Laohaphatanaleart K, Piyachomkwan K et al (2010) The fine structure of cassava amylopectin. Part 2. Building block structure of clusters. Int J Biol Macromol 47:325–335

    CAS  PubMed  Google Scholar 

  • Bertoft E, Källman A, Koch K et al (2011a) The building block structure of barley amylopectin. Int J Biol Macromol 49:900–909

    CAS  PubMed  Google Scholar 

  • Bertoft E, Källman A, Koch K et al (2011b) The cluster structure of barley amylopectins of different genetic backgrounds. Int J Biol Macromol 49:441–453

    CAS  PubMed  Google Scholar 

  • Bertoft E, Koch K, Ã…man P (2012a) Building block organisation of clusters in amylopectin of different structural types. Int J Biol Macromol 50:1212–1223

    CAS  PubMed  Google Scholar 

  • Bertoft E, Koch K, Ã…man P (2012b) Structure of building blocks in amylopectins. Carbohydr Res 361:105–113

    CAS  PubMed  Google Scholar 

  • Bijttebier A, Goesaert H, Delcour JA (2010) Hydrolysis of amylopectin by amylolytic enzymes: structural analysis of the residual amylopectin population. Carbohydr Res 345:235–242

    CAS  PubMed  Google Scholar 

  • Biliaderis CG, Grant DR, Vose JR (1981a) Structural characterization of legume starches. I. Studies on amylose, amylopectin, and beta-limit dextrins. Cereal Chem 58:496–502

    CAS  Google Scholar 

  • Biliaderis CG, Grant DR, Vose JR (1981b) Structural characterization of legume starches. II. Studies on acid-treated starches. Cereal Chem 58:502–507

    CAS  Google Scholar 

  • Bines BJ, Whelan WJ (1960) The mechanism of carbohydrase action. 6. Structure of a salivary α-amylase limit dextrin from amylopectin. Biochem J 76:253–257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borovsky D, Smith EE, Whelan WJ et al (1979) The mechanism of Q-enzyme action and its influence on the structure of amylopectin. Arch Biochem Biophys 198:627–631

    CAS  PubMed  Google Scholar 

  • Buléon A, Colonna P, Planchot V et al (1998a) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112

    PubMed  Google Scholar 

  • Buléon A, Gérard C, Riekel C et al (1998b) Details of the crystalline ultrastructure of C-starch granules revealed by synchrotron microfocus mapping. Macromolecules 31:6605–6610

    Google Scholar 

  • Buttrose MS (1960) Submicroscopic development and structure of starch granules in cereal endosperm. J Ultrastr Res 4:231–257

    CAS  Google Scholar 

  • Buttrose MS (1962) The influence of environment on the shell structure of starch granules. J Cell Biol 14:159–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron RE, Donald AM (1992) A small-angle X-ray scattering study of the annealing and gelatinization of starch. Polymer 33:2628–2635

    CAS  Google Scholar 

  • Charoenkul N, Uttapap D, Pathipanawat W et al (2006) Simultaneous determination of amylose content & unit chain distribution of amylopectins of cassava starches by fluorescent labeling/HPSEC. Carbohydr Polym 65:102–108

    CAS  Google Scholar 

  • Chauhan F, Seetharaman K (2013) On the organization of chains in amylopectin. Starch-Starke 65:191–199

    CAS  Google Scholar 

  • Dang JMC, Copeland L (2003) Imaging rice grains using atomic force microscopy. J Cereal Sci 37:165–170

    Google Scholar 

  • Daniels DR, Donald AM (2003) An improved model for analyzing the small angle X-ray scattering of starch granules. Biopolymers 69:165–175

    CAS  PubMed  Google Scholar 

  • Derde LJ, Gomand SV, Courtin CM et al (2012) Hydrolysis of β-limit dextrins by α-amylases from porcine pancreas, Bacillus subtilis, Pseudomonas saccharophila and Bacillus stearothermophilus. Food Hydrocol 26:231–239

    CAS  Google Scholar 

  • Erlander S, French D (1956) A statistical model for amylopectin and glycogen. The condensation of A-R-Bf-1 units. J Polym Sci Part A 20:7–28

    CAS  Google Scholar 

  • Finch P, Sebesta DW (1992) The amylase of Pseudomonas stutzeri as a probe of the structure of amylopectin. Carbohydr Res 227:c1–c4

    CAS  Google Scholar 

  • Fredriksson H, Silverio J, Andersson R et al (1998) The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydr Polym 35:119–134

    CAS  Google Scholar 

  • French D (1972) Fine structure of starch and its relationship to the organization of starch granules. J Jpn Soc Starch Sci 19:8–25

    CAS  Google Scholar 

  • Fritzsche J (1834) Ueber das Amylum. Ann Phys Chem 32:129–160

    Google Scholar 

  • Fulton DC, Edwards A, Pilling E et al (2002) Role of granule-bound starch synthase in determination of amylopectin structure and starch granule morphology in potato. J Biol Chem 277:10834–10841

    CAS  PubMed  Google Scholar 

  • Fuwa H, Sugimoto Y, Tanaka M et al (1978) Susceptibility of various starch granules to amylases as seen by scanning electron microscope. Starch-Starke 30:186–191

    CAS  Google Scholar 

  • Gallant DJ, Bouchet B, Baldwin PM (1997) Microscopy of starch: evidence of a new level of granule organization. Carbohydr Polym 32:177–191

    CAS  Google Scholar 

  • Genkina NK, Wikman J, Bertoft E et al (2007) Effects of structural imperfection on gelatinization characteristics of amylopectin starches with A- and B-type crystallinity. Biomacromolecules 8:2329–2335

    CAS  PubMed  Google Scholar 

  • Gérard C, Planchot V, Colonna P et al (2000) Relationship between branching density and crystalline structure of A- and B-type maize mutant starches. Carbohydr Res 326:130–144

    PubMed  Google Scholar 

  • Gérard C, Barron C, Colonna P et al (2001) Amylose determination in genetically modified starches. Carbohydr Polym 44:19–27

    Google Scholar 

  • Glaring MA, Koch CB, Blennow A (2006) Genotype-specific spatial distribution of starch molecules in the starch granule: a combined CLSM and SEM approach. Biomacromolecules 7:2310–2320

    CAS  PubMed  Google Scholar 

  • Goesaert H, Bijttebier A, Delcour JA (2010) Hydrolysis of amylopectin by amylolytic enzymes: level of inner chain attack as an important analytical differentiation criterion. Carbohydr Res 345:397–401

    CAS  PubMed  Google Scholar 

  • Gunja-Smith Z, Marshall JJ, Mercier C et al (1970) A revision of the Meyer-Bernfeld model of glycogen and amylopectin. FEBS Lett 12:101–104

    PubMed  Google Scholar 

  • Hall RS, Manners DJ (1978) The action of malted-barley alpha-amylase on amylopectin. Carbohydr Res 66:295–297

    CAS  Google Scholar 

  • Hanashiro I, J-i A, Hizukuri S (1996) A periodic distribution of chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohydr Res 283:151–159

    CAS  Google Scholar 

  • Hanashiro I, Tagawa M, Shibahara S et al (2002) Examination of molar-based distribution of A, B and C chains of amylopectin by fluorescent labeling with 2-aminopyridine. Carbohydr Res 337:1211–1215

    CAS  PubMed  Google Scholar 

  • Hanashiro I, Matsugasako J-i, Egashira T et al (2005) Structural characterization of long unit-chains of amylopectin. J Appl Glycosci 52:233–237

    CAS  Google Scholar 

  • Hanashiro I, Itoh K, Kuratomi Y et al (2008) Granule-bound starch synthase I is responsible for biosynthesis of extra-long unit chains of amylopectin in rice. Plant Cell Phys 49:925–933

    CAS  Google Scholar 

  • Hanson EA, Katz JR (1934a) Abhandlungen zur physikalischen Chemie der Stärke und der Brotbereitung. XVII. Ãœber Versuche die gewachsene Struktur des Stärkekorns mikroskopisch sichtbar zu machen besonders an lintnerisierter Stärke. Z physikal Chem abt 168:339–352

    Google Scholar 

  • Hanson EA, Katz JR (1934b) Abhandlungen zur physikalischen Chemie der Stärke und der Brotbereitung. XVIII. Weitere Versuche die gewachsene Struktur des Stärkekorns mikroskopisch sichtbar zu machen. Z physikal Chem abt 169:135–142

    Google Scholar 

  • Haworth WN, Hirst EL, Isherwood FA (1937) Polysaccharides. Part XXIII. Determination of the chain length of glycogen. J Chem Soc Chem Commun:577–581

    Google Scholar 

  • Hestrin S (1949) Action pattern of crystalline muscle phosphorylase. J Biol Chem 179:943–955

    CAS  PubMed  Google Scholar 

  • Hizukuri S (1985) Relationship between the distribution of the chain length of amylopectin and the crystalline structure of starch granules. Carbohydr Res 141:295–306

    CAS  Google Scholar 

  • Hizukuri S (1986) Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydr Res 147:342–347

    CAS  Google Scholar 

  • Hobson PN, Whelan WJ, Peat S (1951) The enzymic synthesis and degradation of starch. Part XIV. R-enzyme. J Chem Soc:1451–1459

    Google Scholar 

  • Hoover R (2001) Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym 45:253–267

    CAS  Google Scholar 

  • Hughes RC, Smith EE, Whelan WJ (1963) Structure of a pentasaccharide α-limit dextrin formed from amylopectin by Bacillus subtilis α-amylase. Biochem J 88:63P–64P

    Google Scholar 

  • Illingworth B, Larner J, Cori GT (1952) Structure of glycogens and amylopectins. I. Enzymatic determination of chain length. J Biol Chem 199:631–640

    CAS  PubMed  Google Scholar 

  • Imberty A, Pérez S (1988) A revisit to the three-dimensional structure of B-type starch. Biopolymers 27:1205–1221

    CAS  Google Scholar 

  • Imberty A, Pérez S (1989) Conformational analysis and molecular modelling of the branching point of amylopectin. Int J Biol Macromol 11:177–185

    CAS  PubMed  Google Scholar 

  • Imberty A, Chanzy H, Pérez S et al (1987) New three-dimensional structure for A-type starch. Macromolecules 20:2634–2636

    CAS  Google Scholar 

  • Imberty A, Chanzy H, Pérez S et al (1988) The double-helical nature of the crystalline part of A-starch. J Mol Biol 201:365–378

    CAS  PubMed  Google Scholar 

  • Imberty A, Buléon A, Tran V et al (1991) Recent advances in knowledge of starch structure. Starch-Starke 43:375–384

    CAS  Google Scholar 

  • Inouchi N, Horibata T, Nakamura Y et al (2006) Structural and physicochemical characteristics of endosperm starches of rice cultivars recently bred in Japan. In: Yuryev V, Tomasik P, Bertoft E (eds) Starch: achievements in understanding of structure and functionality. Nova Science Publishers, Inc., New York, pp 65–85

    Google Scholar 

  • Jane J-l, Kasemsuwan T, Leas S et al (1994) Anthology of starch granule morphology by scanning electron microscopy. Starch-Starke 46:121–129

    CAS  Google Scholar 

  • Jane J-l, Wong K-s, McPherson AE (1997) Branch-structure difference in starches of A- and B-type X-ray patterns revealed by their Naegeli dextrins. Carbohydr Res 300:219–227

    CAS  Google Scholar 

  • Jenkins PJ, Donald AM (1995) The influence of amylose on starch granule structure. Int J Biol Macromol 17:315–321

    CAS  PubMed  Google Scholar 

  • Jenkins PJ, Cameron RE, Donald AM (1993) A universal feature in the structure of starch granules from different botanical sources. Starch-Starke 45:417–420

    CAS  Google Scholar 

  • Kainuma K, French D (1972) Naegeli amylodextrin and its relationship to starch granule structure. II. Role of water in crystallization of B-starch. Biopolymers 11:2241–2250

    CAS  Google Scholar 

  • Kalinga D, Waduge R, Bertoft E et al (2013) On the differences in granular architecture and starch structure between pericarp and endosperm wheat starches. Starch-Starke 65:791–800

    CAS  Google Scholar 

  • Kalinga DN, Bertoft E, Tetlow I et al (2014) Structure of clusters and building blocks in amylopectin from developing wheat endosperm. Carbohydr Polym 112:325–333

    CAS  PubMed  Google Scholar 

  • Källman A, Bertoft E, Koch K et al (2013) On the interconnection of clusters and building blocks in barley amylopectin. Int J Biol Macromol 55:75–82

    PubMed  Google Scholar 

  • Kiseleva VI, Krivandin AV, Fornal J et al (2005) Annealing of normal and mutant wheat starches. LM, SEM, DSC, and SAXS studies. Carbohydr Res 340:75–83

    CAS  PubMed  Google Scholar 

  • Kitahara K, Eitoku E, Suganuma T et al (1997) Some properties of branched and linear dextrins from Nägeli amylodextrin. Carbohydr Polym 33:187–194

    CAS  Google Scholar 

  • Klucinec JD, Thompson DB (2002) Structure of amylopectins from ae-containing maize starches. Cereal Chem 79:19–23

    CAS  Google Scholar 

  • Koizumi K, Fukuda M, Hizukuri S (1991) Estimation of the distributions of chain length of amylopectins by high-performance liquid chromatography with pulsed amperometric detection. J Chromatogr 585:233–238

    CAS  Google Scholar 

  • Kong X, Corke H, Bertoft E (2009) Fine structure characterization of amylopectins from grain amaranth starch. Carbohydr Res 344:1701–1708

    CAS  PubMed  Google Scholar 

  • Koroteeva DA, Kiseleva VI, Krivandin AV et al (2007a) Structural and thermodynamic properties of rice starches with different genetic background. Part 2. Defectiveness of different supramolecular structures in starch granules. Int J Biol Macromol 41:534–547

    CAS  PubMed  Google Scholar 

  • Koroteeva DA, Kiseleva VA, Sriroth K et al (2007b) Structural and thermodynamic properties of rice starches with different genetic background. Part 1. Differentiation of amylopectin and amylose defects. Int J Biol Macromol 41:391–403

    CAS  PubMed  Google Scholar 

  • Kozlov SS, Blennow A, Krivandin AV et al (2007a) Structural and thermodynamic properties of starches extracted from GBSS and GWD suppressed potato lines. Int J Biol Macromol 40:449–460

    CAS  PubMed  Google Scholar 

  • Kozlov SS, Krivandin AV, Shatalova OV et al (2007b) Structure of starches extracted from near-isogenic wheat lines. Part II. Molecular organization of amylopectin clusters. J Therm Anal Cal 87:575–584

    CAS  Google Scholar 

  • Kubo A, Akdogan G, Nakaya M et al (2010) Structure, physical, and digestive properties of starch from wx ae double-mutant rice. J Agric Food Chem 58:4463–4469

    CAS  PubMed  Google Scholar 

  • Laohaphatanaleart K, Piyachomkwan K, Sriroth K et al (2009) A study of the internal structure in cassava and rice amylopectin. Starch-Starke 61:557–569

    CAS  Google Scholar 

  • Laohaphatanaleart K, Piyachomkwan K, Sriroth K et al (2010) The fine structure of cassava amylopectin. Part 1. Organization of clusters. Int J Biol Macromol 47:317–324

    CAS  PubMed  Google Scholar 

  • Larner J, Illingworth B, Cori GT et al (1952) Structure of glycogens and amylopectins. II. Analysis by stepwise enzymatic degradation. J Biol Chem 199:641–651

    CAS  PubMed  Google Scholar 

  • Lee EYC, Mercier C, Whelan WJ (1968) A method for the investigation of the fine structure of amylopectin. Arch Biochem Biophys 125:1028–1030

    CAS  PubMed  Google Scholar 

  • Lii C-Y, Lineback DR (1977) Characterization and comparison of cereal starches. Cereal Chem 54:138–149

    CAS  Google Scholar 

  • MacGregor AW, Morgan JE (1984) Structure of amylopectins isolated from large and small starch granules of normal and waxy barley. Cereal Chem 61:222–228

    CAS  Google Scholar 

  • Manners DJ (1989) Recent developments in our understanding of amylopectin structure. Carbohydr Polym 11:87–112

    CAS  Google Scholar 

  • Matheson NK, Caldwell RA (2008) Modeling of α(1–4) chain arrangements in α(1–4)(1–6) glucans: the action and outcome of β-amylase and Pseudomonas stutzeri amylase on an α(1–4)(1–6) glucan model. Carbohydr Polym 72:625–637

    CAS  Google Scholar 

  • McIntyre AP, Mukerjea R, Robyt JF (2013) Reducing values: dinitrosalicylate gives over-oxidation and invalid results whereas copper bicinchoninate gives no over-oxidation and valid results. Carbohydr Res 380:118–123

    CAS  PubMed  Google Scholar 

  • McPherson AE, Jane J (1999) Comparison of waxy potato with other root and tuber starches. Carbohydr Polym 40:57–70

    CAS  Google Scholar 

  • Mercier C (1973) The fine structure of corn starches of various amylose-percentage: waxy, normal and amylomaize. Starch-Starke 25:78–83

    CAS  Google Scholar 

  • Meyer A (1895) Untersuchungen über die Stärkekörner. Gustav Fischer, Jena

    Google Scholar 

  • Meyer KH, Bernfeld P (1940) Recherches sur l’amidon V. L’amylopectine. Helv Chim Acta 23:875–885

    CAS  Google Scholar 

  • Meyer KH, Brentano W, Bernfeld P (1940) Recherches sur l’amidon II. Sur la nonhomogénéité de l’amidon. Helv Chim Acta 23:845–853

    CAS  Google Scholar 

  • Millard MM, Dintzis FR, Willett JL et al (1997) Light-scattering molecular weights and intrinsic viscosities of processed waxy maize starches in 90 % dimethyl sulfoxide and H2O. Cereal Chem 74:687–691

    CAS  Google Scholar 

  • Muhr AH, Blanshard JMV, Bates DR (1984) The effect of lintnerisation on wheat and potato starch granules. Carbohydr Polym 4:399–425

    CAS  Google Scholar 

  • Nikuni Z (1969) Starch and cooking (in Japanese). Sci Cook 2:6–14

    Google Scholar 

  • Noda T, Takigawa S, Matsuura-Endo C et al (2005) Physicochemical properties and amylopectin structures of large, small, and extremely small potato starch granules. Carbohydr Polym 60:245–251

    CAS  Google Scholar 

  • O’Sullivan AC, Pérez S (1999) The relationship between internal chain length of amylopectin and crystallinity in starch. Biopolymers 50:381–390

    PubMed  Google Scholar 

  • Ohtani T, Yoshino T, Hagiwara S et al (2000) High-resolution imaging of starch granule structure using atomic force microscopy. Starch-Starke 52:150–153

    CAS  Google Scholar 

  • Oostergetel GT, van Bruggen EFJ (1993) The crystalline domains in potato starch granules are arranged in a helical fashion. Carbohydr Polym 21:7–12

    CAS  Google Scholar 

  • Peat S, Pirt SJ, Whelan WJ (1952a) Enzymic synthesis and degradation of starch. Part XV. β-Amylase and the constitution of amylose. J Chem Soc:705–713

    Google Scholar 

  • Peat S, Whelan WJ, Thomas GJ (1952b) Evidence of multiple branching in waxy maize starch. J Chem Soc:4546–4548

    Google Scholar 

  • Pérez S, Bertoft E (2010) The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch-Starke 62:389–420

    Google Scholar 

  • Pilling E, Smith AM (2003) Growth ring formation in the starch granules of potato tubers. Plant Physiol 132:365–371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Popov D, Buléon A, Burghammer M et al (2009) Crystal structure of A-amylose: a revisit from synchrotron microdiffraction analysis of single crystals. Macromolecules 42:1167–1174

    CAS  Google Scholar 

  • Putaux J-L, Molina-Boisseau S, Momaur T et al (2003) Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis. Biomacromolecules 4:1198–1202

    CAS  PubMed  Google Scholar 

  • Ridout MJ, Parker ML, Hedley CL et al (2003) Atomic force microscopy of pea starch granules: granule architecture of wild-type parent, r and rb single mutants, and the rrb double mutant. Carbohydr Res 338:2135–2147

    CAS  PubMed  Google Scholar 

  • Ridout MJ, Parker ML, Hedley CL et al (2006) Atomic force microscopy of pea starch: granule architecture of the rug3-a, rug4-b, rug5-a and lam-c mutants. Carbohydr Polym 65:64–74

    CAS  Google Scholar 

  • Robin JP (1981) Study of β-limit dextrins from various native starches. Interpretation in term of amylopectin structure. Sci Aliments 1:551–567

    CAS  Google Scholar 

  • Robin JP, Mercier C, Charbonnière R et al (1974) Lintnerized starches. Gel filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch. Cereal Chem 51:389–406

    CAS  Google Scholar 

  • Robyt J, French D (1963) Action pattern and specificity of an amylase from Bacillus subtilis. Arch Biochem Biophys 100:451–467

    CAS  PubMed  Google Scholar 

  • Sande-Bakhuizen HLvd (1926) The structure of starch grains from wheat grown under constant conditions. Proc Soc Exp Biol Med 24:302–305

    Google Scholar 

  • Seetharaman K, Bertoft E (2012a) Perspectives on the history of research on starch. Part I: on the linkages in starch. Starch-Starke 64:677–681

    CAS  Google Scholar 

  • Seetharaman K, Bertoft E (2012b) Perspectives on the history of research on starch. Part IV: on the visualization of granular architecture. Starch-Starke 64:929–934

    CAS  Google Scholar 

  • Shi Y-C, Seib PA (1995) Fine structure of maize starches from four wx-containing genotypes of the W64A inbred line in relation to gelatinization and retrogradation. Carbohydr Polym 26:141–147

    CAS  Google Scholar 

  • Shibanuma K, Takeda Y, Hizukuri S et al (1994) Molecular structures of some wheat starches. Carbohydr Polym 25:111–116

    CAS  Google Scholar 

  • Song Y, Jane J (2000) Characterization of barley starches of waxy, normal, and high amylose varieties. Carbohydr Polym 41:365–377

    CAS  Google Scholar 

  • Srichuwong S, Isono N, Mishima T et al (2005a) Structure of lintnerized starch is related to X-ray diffraction pattern and susceptibility to acid and enzyme hydrolysis of starch granules. Int J Biol Macromol 37:115–121

    CAS  PubMed  Google Scholar 

  • Srichuwong S, Sunarti TC, Mishima T et al (2005b) Starches from different botanical sources I: contribution of amylopectin fine structure to thermal properties and enzyme digestibility. Carbohydr Polym 60:529–538

    CAS  Google Scholar 

  • Stacy CJ, Foster JF (1957) Molecular weight heterogeneity in starch amylopectins. J Polym Sci Part A 25:39–50

    CAS  Google Scholar 

  • Staudinger H, Husemann E (1937) Ãœber hochpolymere Verbindungen. 150. Mitteilung. Ãœber die Konstitution der Stärke. Liebigs Ann Chem 527:195–236

    CAS  Google Scholar 

  • Sterling C (1960) Crystallinity of potato starch. Starch-Starke 12:182–185

    CAS  Google Scholar 

  • Sterling C (1962) A low angle spacing in starch. J Polym Sci 56:S10–S12

    Google Scholar 

  • Summer R, French D (1956) Action of β-amylase on branched oligosaccharides. J Biol Chem 222:469–477

    CAS  PubMed  Google Scholar 

  • Szymonska J, Krok F, Komorowska-Czepirska E et al (2003) Modification of granular potato starch by multiple deep-freezing and thawing. Carbohydr Polym 52:1–10

    CAS  Google Scholar 

  • Takeda Y, Hizukuri S, Juliano BO (1987) Structures of rice amylopectins with low and high affinities for iodine. Carbohydr Res 168:79–88

    CAS  Google Scholar 

  • Takeda Y, Shitaozono T, Hizukuri S (1988) Molecular structure of corn starch. Starch-Starke 40:51–54

    CAS  Google Scholar 

  • Takeda Y, Shibahara S, Hanashiro I (2003) Examination of the structure of amylopectin molecules by fluorescent labeling. Carbohydr Res 338:471–475

    CAS  PubMed  Google Scholar 

  • Tang H, Mitsunaga T, Kawamura Y (2006) Molecular arrangement in blocklets and starch granules architecture. Carbohydr Polym 63:555–560

    CAS  Google Scholar 

  • Tester RF, Karkalas J, Qi X (2004) Starch–composition, fine structure and architecture. J Cereal Sci 39:151–165

    CAS  Google Scholar 

  • Thoma JA, Brothers C, Spradlin J (1970) Subsite mapping of enzymes. Studies on Bacillus subtilis amylase. Biochemistry 9:1768–1775

    CAS  PubMed  Google Scholar 

  • Thompson DB (2000) On the non-random nature of amylopectin branching. Carbohydr Polym 43:223–239

    CAS  Google Scholar 

  • Thurn A, Burchard W (1985) Heterogeneity in branching of amylopectin. Carbohydr Polym 5:441–460

    CAS  Google Scholar 

  • Umeki K, Kainuma K (1981) Fine structure of nägeli amylodextrin obtained by acid treatment of defatted waxy-maize starch – structural evidence to support the double-helix hypothesis. Carbohydr Res 96:143–159

    CAS  Google Scholar 

  • Umeki K, Yamamoto T (1972a) Enzymatic determination of structure of singly branched hexaose dextrins formed by liquefying α-amylase of Bacillus subtilis. J Biochem 72:101–109

    CAS  PubMed  Google Scholar 

  • Umeki K, Yamamoto T (1972b) Structures of branched dextrins produced by saccharifying α-amylase of Bacillus subtilis. J Biochem 72:1219–1226

    CAS  PubMed  Google Scholar 

  • Umeki K, Yamamoto T (1975a) Structures of multi-branched dextrins produced by saccharifying α-amylase from starch. J Biochem 78:897–903

    CAS  PubMed  Google Scholar 

  • Umeki K, Yamamoto T (1975b) Structures of singly branched heptaoses produced by bacterial liquefying α-amylase. J Biochem 78:889–896

    CAS  PubMed  Google Scholar 

  • Utrilla-Coello RG, Hernández-Jaimes C, Carillo-Navas H et al (2014) Acid hydrolysis of native corn starch: morphology, crystallinity, rheological and thermal properties. Carbohydr Polym 103:596–602

    CAS  PubMed  Google Scholar 

  • Vamadevan V, Bertoft E, Seetharaman K (2013) On the importance of organization of glucan chains on thermal properties of starch. Carbohydr Polym 92:1653–1659

    CAS  PubMed  Google Scholar 

  • Vermeylen R, Goderis B, Reynaers H et al (2004) Amylopectin molecular structure reflected in macromolecular organization of granular starch. Biomacromolecules 5:1775–1786

    CAS  PubMed  Google Scholar 

  • Waduge RN, Xu S, Bertoft E et al (2013) Exploring the surface morphology of developing wheat starch granules by using atomic force microscopy. Starch-Starke 65:398–409

    CAS  Google Scholar 

  • Waigh TA, Donald AM, Heidelbach F et al (1999) Analysis of the native structure of starch granules with small angle X-ray microfocusing scattering. Biopolymers 49:91–105

    CAS  Google Scholar 

  • Waigh TA, Gidley MJ, Komanshek BU et al (2000a) The phase transformations in starch during gelatinisation: a liquid crystalline approach. Carbohydr Res 328:165–176

    CAS  PubMed  Google Scholar 

  • Waigh TA, Kato KL, Donald AM et al (2000b) Side-chain liquid-crystalline model for starch. Starch-Starke 52:450–460

    CAS  Google Scholar 

  • Walker GJ, Whelan WJ (1960a) The mechanism of carbohydrase action. 7. Stages in the salivary α-amylolysis of amylose, amylopectin and glycogen. Biochem J 76:257–263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker GJ, Whelan WJ (1960b) The mechanism of carbohydrase action. 8. Structures of the muscle-phosphorylase limit dextrins of glycogen and amylopectin. Biochem J 76:264–268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe T, French D (1980) Structural features of naegeli amylodextrin as indicated by enzymic degradation. Carbohydr Res 84:115–123

    CAS  Google Scholar 

  • Wikman J, Larsen FH, Motawia MS et al (2011) Phosphate esters in amylopectin clusters of potato tuber starch. Int J Biol Macromol 48:639–649

    CAS  PubMed  Google Scholar 

  • Wikman J, Blennow A, Buléon A et al (2014) Influence of amylopectin structure and degree of phosphorylation on the molecular composition of potato starch lintners. Biopolymers 101:257–271

    CAS  PubMed  Google Scholar 

  • Xia H, Thompson DB (2006) Debranching of β-dextrins to explore branching patterns of amylopectins from three maize genotypes. Cereal Chemi 83:668–676

    CAS  Google Scholar 

  • Yao Y, Thompson DB, Guiltinan MJ (2004) Maize starch-branching enzyme isoforms and amylopectin structure. In the absence of starch-branching enzyme IIb, the further absence of starch-branching enzyme Ia leads to increased branching. Plant Physiol 136:3515–3523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yun S-H, Matheson NK (1993) Structures of the amylopectins of waxy, normal, amylose-extender, and wx:ae genotypes and of the phytoglycogen of maize. Carbohydr Res 243:307–321

    CAS  PubMed  Google Scholar 

  • Zhu F, Corke H, Bertoft E (2011a) Amylopectin internal molecular structure in relation to physical properties of sweetpotato starch. Carbohydr Polym 84:907–918

    CAS  Google Scholar 

  • Zhu F, Corke H, Ã…man P et al (2011b) Structures of building blocks in clusters of sweetpotato amylopectin. Carbohydr Res 346:2913–2925

    CAS  PubMed  Google Scholar 

  • Zhu F, Corke H, Ã…man P et al (2011c) Structures of clusters in sweetpotato amylopectin. Carbohydr Res 346:1112–1121

    CAS  PubMed  Google Scholar 

  • Zhu F, Bertoft E, Källman A et al (2013) Molecular structure of starches from maize mutants deficient in starch synthase III. J Agric Food Chem 61:9899–9907

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Bertoft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Bertoft, E. (2015). Fine Structure of Amylopectin. In: Nakamura, Y. (eds) Starch. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55495-0_1

Download citation

Publish with us

Policies and ethics