Skip to main content

Discrete Time Optimal Control Problems on Large Intervals

  • Chapter
Book cover Advances in Mathematical Economics Volume 19

Part of the book series: Advances in Mathematical Economics ((MATHECON,volume 19))

Abstract

In this paper we study the structure of approximate solutions of an autonomous nonconcave discrete-time optimal control system with a compact metric space of states. In the first part of the paper we discuss our recent results for systems described by a bounded upper semicontinuous objective function which determines an optimality criterion. These optimal control systems are discrete-time analogs of Lagrange problems in the calculus of variations. It is known that approximate solutions are determined mainly by the objective function, and are essentially independent of the choice of time interval and data, except in regions close to the endpoints of the time interval. Our goal is to study the structure of approximate solutions in regions close to the endpoints of the time intervals. The second part of the paper contains new results on the structure of solutions of optimal control systems which are discrete-time analogs of Bolza problems in the calculus of variations. These systems are described by a pair of objective functions which determines an optimality criterion.

JEL Classification: C02, C61, C67

Mathematics Subject Classification (2010): 49J99

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson BDO, Moore JB (1971) Linear optimal control. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  2. Aseev SM, Veliov VM (2012) Maximum principle for infinite-horizon optimal control problems with dominating discount. Dyn Contin Discret Impuls Syst Ser B 19:43–63

    MathSciNet  Google Scholar 

  3. Aubry S, Le Daeron PY (1983) The discrete Frenkel-Kontorova model and its extensions I. Physica D 8:381–422

    Article  MathSciNet  Google Scholar 

  4. Baumeister J, Leitao A, Silva GN (2007) On the value function for nonautonomous optimal control problems with infinite horizon. Syst Control Lett 56:188–196

    Article  MathSciNet  Google Scholar 

  5. Blot J (2009) Infinite-horizon Pontryagin principles without invertibility. J Nonlinear Convex Anal 10:177–189

    MathSciNet  Google Scholar 

  6. Blot J, Cartigny P (2000) Optimality in infinite-horizon variational problems under sign conditions. J Optim Theory Appl 106:411–419

    Article  MathSciNet  Google Scholar 

  7. Blot J, Hayek N (2014) Infinite-horizon optimal control in the discrete-time framework. Springer briefs in optimization. Springer, New York

    Book  Google Scholar 

  8. Cartigny P, Michel P (2003) On a sufficient transversality condition for infinite horizon optimal control problems. Autom J IFAC 39:1007–1010

    Article  MathSciNet  Google Scholar 

  9. Gaitsgory V, Rossomakhine S, Thatcher N (2012) Approximate solution of the HJB inequality related to the infinite horizon optimal control problem with discounting. Dyn Contin Discret Impuls Syst Ser B 19:65–92

    MathSciNet  Google Scholar 

  10. Hayek N (2011) Infinite horizon multiobjective optimal control problems in the discrete time case. Optimization 60:509–529

    Article  MathSciNet  Google Scholar 

  11. Jasso-Fuentes H, Hernandez-Lerma O (2008) Characterizations of overtaking optimality for controlled diffusion processes. Appl Math Optim 57:349–369

    Article  MathSciNet  Google Scholar 

  12. Kolokoltsov V, Yang W (2012) The turnpike theorems for Markov games. Dyn Games Appl 2:294–312

    Article  MathSciNet  Google Scholar 

  13. Leizarowitz A (1985) Infinite horizon autonomous systems with unbounded cost. Appl Math Opt 13:19–43

    Article  MathSciNet  Google Scholar 

  14. Leizarowitz A (1986) Tracking nonperiodic trajectories with the overtaking criterion. Appl Math Opt 14:155–171

    Article  MathSciNet  Google Scholar 

  15. Leizarowitz A, Mizel VJ (1989) One dimensional infinite horizon variational problems arising in continuum mechanics. Arch Ration Mech Anal 106:161–194

    Article  MathSciNet  Google Scholar 

  16. Lykina V, Pickenhain S, Wagner M (2008) Different interpretations of the improper integral objective in an infinite horizon control problem. J Math Anal Appl 340:498–510

    Article  MathSciNet  Google Scholar 

  17. Makarov VL, Rubinov AM (1977) Mathematical theory of economic dynamics and equilibria. Springer, New York

    Book  Google Scholar 

  18. Malinowska AB, Martins N, Torres DFM (2011) Transversality conditions for infinite horizon variational problems on time scales. Optim Lett 5:41–53

    Article  MathSciNet  Google Scholar 

  19. Marcus M, Zaslavski AJ (1999) The structure of extremals of a class of second order variational problems. Ann Inst Henri Poincaré Anal Non Lineare 16:593–629

    Article  MathSciNet  Google Scholar 

  20. McKenzie LW (1976) Turnpike theory. Econometrica 44:841–866

    Article  MathSciNet  Google Scholar 

  21. Mordukhovich BS (2011) Optimal control and feedback design of state-constrained parabolic systems in uncertainly conditions. Appl Anal 90:1075–1109

    Article  MathSciNet  Google Scholar 

  22. Mordukhovich BS, Shvartsman I (2004) Optimization and feedback control of constrained parabolic systems under uncertain perturbations. In: de Queiroz MS, Malisoff M, Wolensk P (eds) Optimal control, stabilization and nonsmooth analysis. Lecture notes in control and information sciences. Springer, Berlin/New York, pp 121–132

    Chapter  Google Scholar 

  23. Ocana Anaya E, Cartigny P, Loisel P (2009) Singular infinite horizon calculus of variations. Applications to fisheries management. J Nonlinear Convex Anal 10:157–176

    MathSciNet  Google Scholar 

  24. Pickenhain S, Lykina V, Wagner M (2008) On the lower semicontinuity of functionals involving Lebesgue or improper Riemann integrals in infinite horizon optimal control problems. Control Cybern 37:451–468

    MathSciNet  Google Scholar 

  25. Porretta A, Zuazua E (2013) Long time versus steady state optimal control. SIAM J Control Optim 51:4242–4273

    Article  MathSciNet  Google Scholar 

  26. Samuelson PA (1965) A catenary turnpike theorem involving consumption and the golden rule. Am Econ Rev 55:486–496

    Google Scholar 

  27. Zaslavski AJ (2006) Turnpike properties in the calculus of variations and optimal control. Springer, New York

    Google Scholar 

  28. Zaslavski AJ (2007) Turnpike results for a discrete-time optimal control systems arising in economic dynamics. Nonlinear Anal 67:2024–2049

    Article  MathSciNet  Google Scholar 

  29. Zaslavski AJ (2009) Two turnpike results for a discrete-time optimal control systems. Nonlinear Anal 71:902–909

    Article  MathSciNet  Google Scholar 

  30. Zaslavski AJ (2010) Stability of a turnpike phenomenon for a discrete-time optimal control systems. J Optim Theory Appl 145:597–612

    Article  MathSciNet  Google Scholar 

  31. Zaslavski AJ (2011) Turnpike properties of approximate solutions for discrete-time control systems. Commun Math Anal 11:36–45

    MathSciNet  Google Scholar 

  32. Zaslavski AJ (2011) Structure of approximate solutions for a class of optimal control systems. J Math Appl 34:1–14

    MathSciNet  Google Scholar 

  33. Zaslavski AJ (2011) Stability of a turnpike phenomenon for a class of optimal control systems in metric spaces. Numer Algebra Control Optim 1:245–260

    Article  MathSciNet  Google Scholar 

  34. Zaslavski AJ (2011) The existence and structure of approximate solutions of dynamic discrete time zero-sum games. J Nonlinear Convex Anal 12:49–68

    MathSciNet  Google Scholar 

  35. Zaslavski AJ (2013) Nonconvex optimal control and variational problems. Springer optimization and its applications. Springer, New York

    Book  Google Scholar 

  36. Zaslavski AJ (2014) Turnpike properties of approximate solutions of nonconcave discrete-time optimal control problems. J Convex Anal 21:681–701

    MathSciNet  Google Scholar 

  37. Zaslavski AJ (2014) Turnpike phenomenon and infinite horizon optimal control. Springer optimization and its applications. Springer, New York

    Google Scholar 

  38. Zaslavski AJ (2014) Turnpike properties for nonconcave problems. Adv Math Econ 18:101–134

    Article  MathSciNet  Google Scholar 

  39. Zaslavski AJ (2014) Structure of solutions of discrete time optimal control roblems in the regions close to the endpoints. Set-Valued Var Anal 22:809–842

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander J. Zaslavski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Zaslavski, A.J. (2015). Discrete Time Optimal Control Problems on Large Intervals. In: Kusuoka, S., Maruyama, T. (eds) Advances in Mathematical Economics Volume 19. Advances in Mathematical Economics, vol 19. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55489-9_4

Download citation

Publish with us

Policies and ethics