Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 322 Accesses

Abstract

Protein–protein interactions (PPIs) play a vital role in numerous cellular functions, and have consequently been identified as novel drug discovery targets. However, it is quite difficult to find suitable drug-like lead compounds that behave as PPI inhibitors because small-molecule inhibitors cannot cover the large interfaces involved in PPIs. The high-throughput screening of a natural products library was conducted to identify potential PPI inhibitors and thielocin B1 was found to be a potent inhibitor of the formation of PAC3 homodimer. Preliminary in silico studies indicated that thielocin B1 was binding to a large hill-like structure on the surface of PAC3. Subsequent analysis of the structure-activity relationships of thielocin B1 and its derivatives showed that thielocin B1 occupied a unique area of chemical space on the surface of the protein, which would otherwise be difficult to reach with traditional synthetic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holton RA, Somoza C, Kim HB, Liang F, Biediger RJ, Boatman PD, Shindo M, Smith CC, Kim S. J Am Chem Soc. 1994;116:1597–8.

    Article  CAS  Google Scholar 

  2. Holton RA, Kim HB, Somoza C, Liang F, Biediger RJ, Boatman PD, Shindo M, Smith CC, Kim S. J Am Chem Soc. 1994;116:1599–600.

    Article  CAS  Google Scholar 

  3. Nicolaou KC, Yang Z, Ueno H, Nantermet PG, Guy RK, Claiborone CF, Renaud J, Couladouros EA, Paulvannan K, Sorensen EJ. Nature. 1994;367:630–4.

    Article  CAS  Google Scholar 

  4. Masters JJ, Link JT, Synder LB, Young WB, Danishefsky SJ. Angew Chem Int Ed. 1995;34:1723–6.

    Article  CAS  Google Scholar 

  5. Wender PA, Badham NF, Conway SP, Floreancig PE, Glass ET, Gränicher C, Houze JB, Jänichen J, Lee D, Marquess DG, McGrane PL, Meng W, Mucciaro TP, Mühlebach M, Natchus MG, Paulsen H, Rawlims DB, Satkofsky J, Shuker AJ, Sutton JC, Taylor RE, Tomooka K. J Am Chem Soc. 1997;119:2755–6.

    Article  CAS  Google Scholar 

  6. Wender PA, Badham NF, Conway SP, Floreancig PE, Glass ET, Houze JB, Krauss NE, Lee D, Marquess DG, McGrane PL, Meng W, Natchus MG, Shuker AJ, Sutton JC, Taylor RE. J Am Chem Soc. 1997;119:2757–8.

    Article  CAS  Google Scholar 

  7. Shiina I, Iwadare H, Sakoh H, Hasegawa M, Tani Y, Mukaiyama T. Chem Lett. 1998;27:1–2.

    Article  Google Scholar 

  8. Shiina I, Saitoh K, Fréchard-Ortuno I, Mukaiyama T. Chem Lett. 1998;27:3–4.

    Article  Google Scholar 

  9. Morihara K, Hara R, Kawahara S, Nishimori T, Nakamura N, Kusama H, Kuwajima I. J Am Chem Soc. 1998;120:12980–1.

    Article  Google Scholar 

  10. Doi T, Fuse S, Miyamoto S, Nakai K, Sasuga D, Takahashi T. Chem Asian J. 2006;1:370–83.

    Article  CAS  Google Scholar 

  11. Holton RA, Biedoger RJ, Boatman PD. Taxol Sci Appl. 1995; 97–121.

    Google Scholar 

  12. Hirata Y, Uemura D. Pure Appl Chem. 1986;58:701–10.

    Article  CAS  Google Scholar 

  13. Yu MJ, Zheng W, Seletsky BM. Nat Prod Rep. 2013;30:1158–64.

    Article  CAS  Google Scholar 

  14. Braun P, Gingras A-C. Proteomics. 2012;12:1478–98.

    Article  CAS  Google Scholar 

  15. Harris SL, Levine AJ. Oncogene. 2005;24:2899–908.

    Article  CAS  Google Scholar 

  16. Youle RJ, Strasser A. Nat Rev Mol Cell Biol. 2008;9:47–59.

    Article  CAS  Google Scholar 

  17. Whitty A, Kumaravel G. Nat Chem Biol. 2006;2:112–8.

    Article  CAS  Google Scholar 

  18. Conte LL, Chothia C, Janin J. J Mol Biol. 1999;285:2177–98.

    Article  Google Scholar 

  19. Smith RD, Hu L, Falkner JA, Benson ML, Nerothin JP, Carlson HA. J Mol Graph Model. 2006;24:414–25.

    Article  CAS  Google Scholar 

  20. Wells JA, McClendon CL. Nature. 2007;450:112–8.

    Article  Google Scholar 

  21. Zinzalla G, Thurston DE. Future. Med Chem. 2009;1:65–93.

    CAS  Google Scholar 

  22. Arkin MR, Wells JA. Nat Rev Drug Dis. 2012;11:173–5.

    Article  Google Scholar 

  23. Vu B, Wovkulich P, Pizzolato G, Lovey A, Ding Q, Jiang N, Liu J-J, Zhao C, Glenn K, Wen Y, Tovar C, Packman K, Vassilev L, Graves B. ACS Med Chem Lett. 2013;4:466–9.

    Article  CAS  Google Scholar 

  24. Olterdolf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri D, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letao A, Li C, Mitte MJ, Nettesheim DG, Ng S, Nimmer PM, O’Connor JM, Oleksijew A, Petros AM, Reed CR, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH. Nature. 2005;435:677–81.

    Article  Google Scholar 

  25. Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S, Johnson EF, Marsh KC, Mitten MJ, Nimmer P, Roberts L, Tahir SK, Xiao Y, Yang X, Zhang H, Fesik S, Rosenberg SH, Elmore SW. Cancer Res. 2008;68:3421–8.

    Article  CAS  Google Scholar 

  26. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, Dayton BD, Ding H, Enschede SE, Fairbrother WJ, Huamg DCS, Hymowitz SG, Jin S, Khaw SL, Kovar PJ, Lam LT, Lee J, Maecker HL, Marsh KC, Mason KD, Mitten MJ, Nimmer PM, Oleksijew A, Park CH, Park C-M, Phillips DC, Roberts AD, Sampath D, Seymour JF, Smith ML, Sullivan GM, Tahir SK, Tse C, Wendt MD, Xiao Y, Xue JC, Zhang H, Humerickhouse RA, Rosenberg SH, Elmore SW. Nat Med. 2013;19:202–8.

    Article  CAS  Google Scholar 

  27. Hashimoto J, Watanabe T, Seki T, Karasawa S, Izumikawa M, Seki T, Iemura S, Natsume T, Nomura N, Goshima N, Miyawaki A, Takagi M, Shin-ya K. J Biomol Screen. 2009;14:970–9.

    Article  CAS  Google Scholar 

  28. Ueyama T, Kusakabe T, Karasawa S, Kawasaki T, Shimizu A, Son J, Leto TL, Miyawaki A, Saito N. J Immunol. 2008;181:629–40.

    Article  CAS  Google Scholar 

  29. Miyawaki A, Karasawa S. Nat Chem Biol. 2007;3:598–601.

    Article  CAS  Google Scholar 

  30. Izumikawa M, Hashimoto J, Hirokawa T, Sugimoto S, Kato T, Takagi M, Shin-ya K. J Nat Prod. 2010;73:628–31.

    Article  CAS  Google Scholar 

  31. Hirano Y, Hendil KB, Yashiroda H, Iemura S, Nagane R, Hioki Y, Natsume T, Tanaka K, Murata S. Nature. 2005;437:1381–5.

    Article  CAS  Google Scholar 

  32. Hirano Y, Hayashi H, Iemura S, Hendil KB, Niwa S, Kishimoto T, Kasahara M, Natsume T, Tanaka K, Murata S. Mol Cell. 2006;24:977–84.

    Article  CAS  Google Scholar 

  33. Le Tellec B, Battault MB, Courbeyrette R, Guerois R, Marsolier-Kergoat MC, Peyroche A. Mol Cell. 2007;27:660–74.

    Article  Google Scholar 

  34. Kusmierczyk AR, Kunjappu MJ, Funakoshi M, Hochstrasser M. Nat Struct Mol Biol. 2008;15:237–44.

    Article  CAS  Google Scholar 

  35. Romas PC, Dohmen RJ. Structure. 2008;16:1296–304.

    Article  Google Scholar 

  36. Yashiroda H, Mizushima T, Okamoto K, Kameyama T, Hayashi H, Kishimoto T, Niwa S, Kasahara M, Kurimoto E, Sakata E, Takagi K, Suzuki A, Hirano Y, Murata S, Kato K, Yamane T, Tanaka K. Nat Struct Mol Biol. 2008;15:228–36.

    Article  CAS  Google Scholar 

  37. Bonvini P, Zorzi E, Basso G, Rosolen A. Leukemia. 2007;24:838–42.

    Google Scholar 

  38. Matsumoto K, Tanaka K, Matsutani S, Sakazaki R, Hinoo H, Uotani N, Tanimoto T, Kawamura Y, Nakamoto S. Yoshida. T J Antibiot. 1995;48:106–12.

    Article  CAS  Google Scholar 

  39. Genisson Y, Tyler PC, Young RN. J Am Chem Soc. 1994;116:759–60.

    Article  CAS  Google Scholar 

  40. Genisson Y, Tyler PC, Ball RG, Young RN. J Am Chem Soc. 2001;123:11381–7.

    Article  CAS  Google Scholar 

  41. Genisson Y, Young RN. Tetrahedron Lett. 1994;35:7747–50.

    Article  CAS  Google Scholar 

  42. Teshirogi I, Matsutani S, Shirahase K, Fujii Y, Yoshida T, Tanaka K, Ohtani M. J Med Chem. 1996;39:5183–91.

    Article  CAS  Google Scholar 

  43. Friensner RA, Banks JL, Murphy RB, Halgrem TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS. J Med Chem. 2004;47:1739–49.

    Article  Google Scholar 

  44. The results of preliminary simulation are also described in our published paper.

    Google Scholar 

  45. Ullmann F. Chem Ber. 1904;37:853–4.

    Article  Google Scholar 

  46. Ullmann F, Bielecki J. Chem Ber. 1901;34:2174–85.

    Article  CAS  Google Scholar 

  47. Ullmann F. Chem Ber. 1903;36:2382–4.

    Article  Google Scholar 

  48. Ullmann F, Sponagel P. Chem Ber. 1905;38:2211–2.

    Article  CAS  Google Scholar 

  49. Bäckvall J-E, Björkman EE, Pettersson L, Siegbahn P. J Am Chem Soc. 1984;106:4369–73.

    Article  Google Scholar 

  50. Aranyos A, Old DW, Kiyomori A, Wolfe JP, Sadighi JP, Buchwald SL. J Am Chem Soc. 1999;121:4369–78.

    Article  CAS  Google Scholar 

  51. Mann G, Incarvito C, Rheingold AL, Hartwig JF. J Am Chem Soc. 1999;121:3224–5.

    Article  CAS  Google Scholar 

  52. Cristau H-J, Cellier PP, Hamada S, Spindler J-F, Taillefer M. Org Lett. 2004;6:913–6.

    Article  CAS  Google Scholar 

  53. Hartwig JF. Angew Chem Int Ed. 1998;37:2046–67.

    Article  CAS  Google Scholar 

  54. Ley SV, Thomas AW. Angew Chem Int Ed. 2003;42:5400–49.

    Article  CAS  Google Scholar 

  55. Frlan R, Kikelj D. Synthesis. 2006;14:2271–85.

    Google Scholar 

  56. Beston MS, Clayden J, Worrall CP, Peace S. Angew Chem Int Ed. 2006;45:5803–7.

    Article  Google Scholar 

  57. Sperotto E, Klink GPM, Vries JG, Koten G. Tetrahedron. 2010;66:9009–20.

    Article  CAS  Google Scholar 

  58. Vilsmeier A, Haack A. Ber Deutsch Chem Ges. 1927;60:119–22.

    Article  Google Scholar 

  59. Downie IM, Earle MJ, Heaney H, Shunhaibar KF. Tetrahedron. 1993;49:4015–34.

    Article  CAS  Google Scholar 

  60. Duff JC, Bills EJ. J Chem Soc. 1932; 1987–88.

    Google Scholar 

  61. Duff JC, Bills EJ. J Chem Soc. 1934; 1305–08.

    Google Scholar 

  62. Duff JC, Bills EJ. J Chem Soc. 1941; 547–550.

    Google Scholar 

  63. Smith WE. J Org Chem. 1972;37:3972–3.

    Article  CAS  Google Scholar 

  64. Rieche A, Gross H, Höft E. Chem Ber. 1960;93:88–94.

    Article  CAS  Google Scholar 

  65. Gross H, Rieche A, Mattey G. Chem Ber. 1963;96:308–19.

    Article  CAS  Google Scholar 

  66. Foster MP, Wuttke DS, Clemens KR, Jahnke W, Radhakrishnan I, Tennant L, Reymond M, Chung J, Wright PE. J Biomol NMR. 1998;12:51–71.

    Article  CAS  Google Scholar 

  67. Takahashi H, Nakanishi T, Kami K, Arata Y, Shimada I. Nat Struct Biol. 2000;7:220–3.

    Article  CAS  Google Scholar 

  68. Battiste JL, Wangner G. Biochemistry. 2000;39:5355–65.

    Article  CAS  Google Scholar 

  69. Jahnke W. ChemBioChem. 2002;3:167–73.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosuke Ohsawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Ohsawa, K. (2015). Introduction. In: Total Synthesis of Thielocin B1 as a Protein-Protein Interaction Inhibitor of PAC3 Homodimer. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55447-9_1

Download citation

Publish with us

Policies and ethics