Skip to main content

Human Balance Control: Dead Zones, Intermittency, and Micro-chaos

  • Chapter
  • First Online:
Mathematical Approaches to Biological Systems

Abstract

The development of strategies to minimize the risk of falling in the elderly represents a major challenge for aging in industrialized societies. The corrective movements made by humans to maintain balance are small amplitude, intermittent and ballistic. Small-amplitude, complex oscillations (“micro-chaos”) frequently arise in industrial settings when a time-delayed digital processor attempts to stabilize an unstable equilibrium. Taken together, these observations motivate considerations of the effects of a sensory threshold on the stabilization of an inverted pendulum by time-delayed feedback. In the resulting switching-type delay differential equations, the sensory threshold is a strong small-scale nonlinearity which has no effect on large-scale stabilization but may produce complex, small-amplitude dynamics including limit cycle oscillations and micro-chaos. A close mathematical relationship exists between a scalar model for balance control and the micro-chaotic map that arises in some models of digitally controlled machines. Surprisingly, transient, time-dependent, bounded solutions (“transient stabilization”) can arise even for parameter ranges where the equilibrium is asymptotically unstable. In other words, the combination of a sensory threshold with a time-delayed sampled feedback can increase the range of parameter values for which balance can be maintained, at least transiently. Neurobiological observations suggest that sensory thresholds can be manipulated either passively by changing posture or actively using efferent feedback. Thus it may be possible to minimize the risk of falling by means of strategies that manipulate sensory thresholds by using physiotherapy and appropriate exercises.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. an der Heiden U, Mackey MC (1982) The dynamics of production and destruction: analytic insight into complex behavior. J Math Biol 16:75–101

    Google Scholar 

  2. an der Heiden U, Mackey MC (1987) Mixed feedback: a paradigm for regular and irregular oscillations. In: Rensing L, an der Heiden U, Mackey MC (eds) Temporal disorder in human oscillatory systems. Springer, New York, pp 30–36

    Google Scholar 

  3. an der Heiden U, Longtin A, Mackey M, Milton J, Scholl R (1990) Oscillatory modes in a nonlinear second order differential equation with delay. J Dyn Differ Equ 2:423–449

    Google Scholar 

  4. Asai Y, Tasaka Y, Nomura K, Nomura M, Casidio M, Morasso P (2009) A model of postural control in quiet standing: robust compensation of delay-induced instability using intermittent activation of feedback control. PLoS One 4:e6169

    Article  PubMed Central  PubMed  Google Scholar 

  5. Bayer W, an der Heiden U (1998) Oscillatory types and bifurcations of a nonlinear second-order differential-difference equation. J Dyn Differ Equ 10:303–326

    Google Scholar 

  6. Bayer W, an der Heiden U (2007) Delay-differential equation with discrete feedback: explicit formulae for infinitely many co-existing solutions. J Appl Math Mech 87:471–479

    Google Scholar 

  7. Beddington JR (1974) Age distributions and the stability of simple discrete time population models. J Theor Biol 47:65–74

    Article  CAS  PubMed  Google Scholar 

  8. Bélair J, Milton JG (1988) Itinerary of a discontinuous map from the continued fraction expansion. Appl Math Lett 1:399–342

    Article  Google Scholar 

  9. Bormann R, Cabrera JL, Milton JG, Eurich CW (2004) Visuomotor tracking on a computer screen: an experimental paradigm to study the dynamics of motor control. Neurocomputing 58–60C:517–523

    Google Scholar 

  10. Bottaro A, Yasutake Y, Nomura T, Casidio M, Morasso P (2008) Bounded stability of the quite standing posture: an intermittent control model. Hum Mov Sci 27:473–495

    Article  PubMed  Google Scholar 

  11. Burdet E, Milner TE (1998) Quantization of human motions and learning of accurate movements. Biol Cybern 78:307–318

    Article  CAS  PubMed  Google Scholar 

  12. Cabrera JL, de la Rubia FJ (1995) Numerical analysis of transient behavior in the discrete random logistic equation with delay. Phys Lett A 197:19–24

    Article  Google Scholar 

  13. Cabrera JL, Milton JG (2002) On-off intermittency in a human balancing task. Phys Rev Lett 89:158702

    Article  PubMed  Google Scholar 

  14. Cabrera JL, Milton JG (2004) Human stick balancing: tuning Lévy flights to improve balance control. Chaos 14:694–698

    Article  Google Scholar 

  15. Cabrera JL, Milton JG (2004) Stick balancing: on-off intermittency and survival times. Nonlinear Stud 11:305–317

    Google Scholar 

  16. Cabrera JL, Milton JG (2012) Stick balancing, falls, and Dragon Kings. Eur Phys J Spec Top 205:231–241

    Article  Google Scholar 

  17. Cabrera JL, Bormann R, Eurich C, Ohira T, Milton J (2004) State-dependent noise and human balance control. Fluct Noise Lett 4:L107–L118

    Article  Google Scholar 

  18. Cabrera JL, Luciani C, Milton J (2006) Neural control on multiple time scales: insights from human stick balancing. Condens Matter Phys 9:373–383

    Article  Google Scholar 

  19. Cluff T, Balasubramaniam R (2009) Motor learning characterized by changing Levy distributions. PloS One 4:e5988

    Article  Google Scholar 

  20. Collins JJ, De Luca CJ (1994) Random walking during quiet standing. Phys Rev Lett 73:764–767

    Article  PubMed  Google Scholar 

  21. Collins JJ, De Luca CJ (1995) Upright, correlated random walks: a statistical-biomechanics approach to the human postural control system. Chaos 5:57–63

    Article  PubMed  Google Scholar 

  22. Csernak G, Stepan G (2005) Life expectancy of transient microchaotic behavior. J Nonlinear Sci 15:63–91

    Article  Google Scholar 

  23. Csernak G, Stepan G (2006) Quick estimation of escape rate with the help of fractal dimension. Commun Nonlinear Sci Numer Simul 11:595–605

    Article  Google Scholar 

  24. Enikov E, Stépán G (1998) Micro-chaotic motion of digitally controlled machines. J Vib Control 4:427–443

    Article  Google Scholar 

  25. Errington PL (1945) Some contributions of a fifteen year local study of the northern bobwhite to a knowledge of population phenomena. Ecol Monogr 15:1–34

    Article  Google Scholar 

  26. Errington PL (1946) Predation and vertebrate populations. Q Rev Biol 21:144–177

    Article  Google Scholar 

  27. Errington PL (1957) Of population cycles and unknowns. Cold Spring Harb Symp Quant Biol 17:287–300

    Article  Google Scholar 

  28. Eurich CW, Milton JG (1996) Noise-induced transitions in human postural sway. Phys Rev E 54:6681–6684

    Article  CAS  Google Scholar 

  29. Fitzpatrick R, McCloskey DI (1994) Proprioceptive, visual and vestibular thresholds for the perception of sway during standing in humans. J Physiol 478:173–186

    Article  PubMed Central  PubMed  Google Scholar 

  30. Fitzpatrick R, Rogers DK, McCloskey DI (1994) Stable human standing with lower-limb afferents providing the only sensory input. J Physiol 480:395–403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Flügge-Lotz I (1968) Discontinuous and optimal control. McGraw-Hill, New York

    Google Scholar 

  32. Fujikawa K, Asai H, Miyaguchi A, Toyama H, Kunita K, Inoue K (2003) Perceived standing posture position after reduction of foot-pressure sensation by cooling the sole. Percept Motor Skills 96:381–399

    Article  Google Scholar 

  33. Gawthrop P, Wong L (2009) Event-driven intermittent control. Int J Control 82:2235–2248

    Article  Google Scholar 

  34. Gawthrop P, Loram I, Gollee H, Lakie M (2014) Intermittent control models of human standing: similarities and differences. Biol Cybern 108:159–168

    Article  PubMed Central  PubMed  Google Scholar 

  35. Guckenheimer J (1995) A robust hybrid stabilization strategy for equilibria. IEEE Trans Autom Control 40:321–326

    Article  Google Scholar 

  36. Haller G, Stépán G (1996) Micro-chaos in digital control. J Nonlinear Sci 6:415–448

    Article  Google Scholar 

  37. Hore J, McCloskey DI, Taylor JL (1990) Task-dependent changes in gain of the reflex response to imperceptible peturbations of joint position in man. J Physiol 429:309–321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Insperger T (2006) Act-and-wait concept for continuous-time control systems with feedback delay. IEEE Trans Control Syst Technol 14:974–977

    Article  Google Scholar 

  39. Insperger T, Milton J (2014) Sensory uncertainty and stick balancing at the fingertip. Biol Cybern 108:85–101

    Article  PubMed  Google Scholar 

  40. Insperger T, Stepan G (2011) Semi-discretization for time-delay systems. Springer, New York

    Book  Google Scholar 

  41. Insperger T, Milton J, Stepan G (2013) Acceleration feedback improves balancing against reflex delay. J R Soc Interface 36:2156–2163

    Google Scholar 

  42. Jeka JJ, Lackner JR (1994) Fingertip contact influences human postural sway. Exp Brain Res 79:495–502

    Article  Google Scholar 

  43. Kiemel T, Zhang Y, Jeka JJ (2011) Identification of neural feedback for upright stance in humans: stabilization rather than sway minimization. J Neurosci 31:15144–15153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Kowalczyk P, Glendinning G, Brown M, Medrano-Cerda G, Dallali H, Shapiro J (2012) Modeling stick balancing using switched systems with linear feedback control. J R Soc Interface 9:234–245

    Article  PubMed Central  PubMed  Google Scholar 

  45. Krebs HI, Aisen ML, Volpe BT, Hogan N (1999) Quantization of continuous arm movements in humans with brain injury. Proc Natl Acad Sci USA 96:4645–4649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Latash ML, Ferreira SA, Wieczorek SA, Duarte M (2003) Movement sway: changes in postural sway during voluntary shifts of the center of pressure. Exp Brain Res 180:314–324

    Google Scholar 

  47. Lee KY, O’Dwyer N, Halaki M, Smith R (2012) A new paradigm for human stick balancing: a suspended not inverted pendulum. Exp Brain Res 221:309–328

    Article  PubMed  Google Scholar 

  48. Leveille SG, Kiel DP, Jones RN, Roman A, Hannan MT, Sorand FA, Kang HG, Samelson EJ, Gagnon M, Freeman M, Lipsitz LA (2008) The MOBILIZE Boston study: design and methods of a prospective cohort study of novel risk factors for falls in an older population. BMC Geriatr 8:16

    Article  PubMed Central  PubMed  Google Scholar 

  49. Lockhart DB, Ting LH (2007) Optimal feedback transformation for balance. Nat Neurosci 10:1329–1336

    Article  CAS  PubMed  Google Scholar 

  50. Longtin A, Milton JG (1988) Complex oscillations in the human pupil light reflex with ‘mixed’ and delayed feedback. Math Biosci 90:183–199

    Article  Google Scholar 

  51. Longtin A, Milton JG, Bos JE, Mackey MC (1990) Noise and critical behavior of the pupil light reflex at oscillation onset. Phys Rev A 41:6992–7005

    Article  PubMed  Google Scholar 

  52. Loram ID, Maganaris CN, Lakie M (2005) Active, non-spring-like muscle movements in human postural sway: how might paradoxical changes in muscle length be produced? J Physiol (Lond) 564:281–293

    Article  CAS  Google Scholar 

  53. Loram ID, Maganaris CN, Lakie M (2005) Human postural sway results from frequent, ballistic bias impulses by soleus and gastrocnemius. J Appl Physiol 100:295–311

    Article  Google Scholar 

  54. Loram ID, Lakie M, Di Giulo I, Maganaris CN (2009) The consequences of short-range stiffness and fluctuating muscle activity for proprioception of postural joint rotations: the relevance to human standing. J Neurophysiol 102:460–474

    Article  PubMed  Google Scholar 

  55. Loram ID, Gollee H, Lakie M, Gawthrop PJ (2010) Human control of an inverted pendulum: is continuous control necessary? Is intermittent control effective? Is intermittent control physiological? J Physiol (Lond) 589:307–324

    Article  Google Scholar 

  56. Lord SR, Sherrington C, Menz HB (2001) Falls in older people: risk factors and strategies for prevention. Cambridge University Press, New York

    Google Scholar 

  57. Losson J, Mackey MC, Longtin A (1990) Solution multistability in first order nonlinear differential delay equations. Chaos 7:167–176

    Google Scholar 

  58. Mackey MC (1979) Periodic auto-immune hemolytic anemia: an induced dynamical disease. Bull Math Biol 41:211–225

    Article  Google Scholar 

  59. Mackey MC, Glass L (1977) Oscillation and chaos in physiological control systems. Science 197:287–289

    Article  CAS  PubMed  Google Scholar 

  60. Maison SF, Usubuchi H, Liberman MC (2013) Efferent feedback minimizes cochlear neuropathy from moderate noise exposure. J Neurosci 33:5542–5552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Maurer C, Peterka RJ (2005) A new interpretation of spontaneous sway measures based on a simple model of human postural control. J Neurophysiol 93:189–200

    Article  PubMed  Google Scholar 

  62. Mehta B, Schaal S (2002) Forward models in visuomotor control. J Neurophysiol 88:942–953

    PubMed  Google Scholar 

  63. Milton JG, Bélair J (1990) Chaos, noise and extinction in models of population growth. Theor Popul Biol 37:273–290

    Article  Google Scholar 

  64. Milton J, Longtin A (1990) Evaluation of constriction and dilation from pupil cycling measurements. Vis Res 30:515–525

    Article  CAS  PubMed  Google Scholar 

  65. Milton JG, Tansky M (1975) The stabilizing influence of buffer species on predation. In: Proceedings of the Japan society for biophysics (Osaka meeting, 1975), p 224. Osaka, Japan

    Google Scholar 

  66. Milton JG, Longtin A, Beuter A, Mackey MC, Glass L (1989) Complex dynamics and oscillations in neurology. J Theor Biol 138:129–147

    Article  CAS  PubMed  Google Scholar 

  67. Milton JG, Cabrera JL, Ohira T (2008) Unstable dynamical systems: delays, noise and control. Europhys Lett (EPL) 83:48001

    Article  Google Scholar 

  68. Milton J, Townsend JL, King MA, Ohira T (2009) Balancing with positive feedback: the case for discontinuous control. Philos Trans R Soc A 367:1181–1193

    Article  Google Scholar 

  69. Milton JG, Ohira T, Cabrera JL, Fraiser RM, Gyorrfy JB, Ruiz FK, Strauss MA, Balch EC, Marin PJ, Alexander JL (2009) Balancing with vibration: a prelude for “drift and act” control. PLoS One 4:e7427

    Article  PubMed Central  PubMed  Google Scholar 

  70. Milton J, Cabrera JL, Ohira T, Tajima S, Tonoskai Y, Eurich CW, Campbell SA (2009) The time-delayed, inverted pendulum: implications for human balance control. Chaos 19:026110

    Article  PubMed  Google Scholar 

  71. Milton JG, Fuerte A, Bélair C, Lippai J, Kamimura A, Ohira T (2013) Delayed pursuit-escape as a model for virtual stick balancing. Nonlinear Theory Appl IEICE 4:129–137

    Article  Google Scholar 

  72. Moss F, Milton JG (2003) Balancing the unbalanced. Nature 425:911–912

    Article  CAS  PubMed  Google Scholar 

  73. Northrop RB (2001) Introduction to dynamic modeling of neuro-sensory systems. CRC, Boca Raton

    Google Scholar 

  74. Patzwelt F, Pawelzik L (2011) Criticality of adaptive control dynamics. Phys Rev Lett 107:238103

    Article  Google Scholar 

  75. Patzwelt F, Riegel M, Ernst U, Pawelzik K (2007) Self-organized critical noise amplification in human closed loop control. Front Comput Neurosci 1:4

    Google Scholar 

  76. Peterka RJ, Loughlin PJ (2004) Dynamic regulation of sensorimotor integration in human postural control. J Neurophysiol 91:410–423

    Article  PubMed  Google Scholar 

  77. Proske U, Gandevia SC (2012) The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev 92:1651–1697

    Article  CAS  PubMed  Google Scholar 

  78. Refshauge KM, Fitzpatrick RC (1995) Perception of movement of the ankle joint: effect of leg position. J Physiol (Lond) 488:243–248

    Article  CAS  Google Scholar 

  79. Refshauge KM, Taylor JL, McCloskey DI, Gianoutses M, Matthews P, Fitzpatrick RC (1998) Movement detection at the human big toe. J Physiol (Lond) 513:307–314

    Article  PubMed Central  CAS  Google Scholar 

  80. Robinovitch SN, Feldman F, Yang Y, Schonnop R, Leung PM, Sarraf T, Sims-Gould J, Loughlin M (2012) Video capture of the circumstances of falls in elderly people residing in long term care: an observational study. Lancet 381:47–54

    Article  PubMed Central  PubMed  Google Scholar 

  81. Robles de la Torre G, Hayward V (2001) Force can overcome object geometry in the perception of shape through active touch. Nature 412:445–448

    Article  CAS  PubMed  Google Scholar 

  82. Ruhe A, Fejer R, Walker B (2013) Does postural sway change in association with manual therapeutic intervention? A review of the literature. Chiropr Man Ther 21:9

    Article  Google Scholar 

  83. Santika SJ, Dawai SZ (2012) Investigation of lower limb fatigue on two standing postures. J Optimass Sist Ind 11:208–213

    Google Scholar 

  84. Schürer F (1948) Zur theorie des balancierens. Math Nachr 1:295–331

    Article  Google Scholar 

  85. Shumway-Cook A, Woollacott MH (2001) Motor control: theory and practical applications, 2nd edn. Williams & Wilkins, New York

    Google Scholar 

  86. Smith LK, Weiss EL, Lehmkuhl LD (1983) Brunnstrom’s clinical kinesiology, 5th edn. F.A. Davis, Philadelphia

    Google Scholar 

  87. Stepan G (1989) Retarded dynamical systems. Longman, Burnt Mill

    Google Scholar 

  88. Stepan G (2009) Delay effects in the human sensory system during balancing. Philos Trans R Soc A 367:1195–1212

    Article  Google Scholar 

  89. Stepan G, Insperger T (2006) Stability of time-periodic and delayed systems: a route to act-and-wait control. Ann Rev Control 30:159–168

    Article  Google Scholar 

  90. Stepan G, Kollar L (2000) Balancing with reflex delay. Math Comput Model 31:199–205

    Article  Google Scholar 

  91. Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7:907–915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Todorov E, Jordan MI (2002) Optimal feedback control as theory of motor coordiation. Nat Neurosci 5:1226–1235

    Article  CAS  PubMed  Google Scholar 

  93. van de Kamp C, Gawthrop PJ, Gollee H, Loram I (2013) Refractoriness in sustained visuo-manual control: is the refractory duration intrinsic or does it depend on external system properties. PLoS Comput Biol 9:e1002845

    Article  Google Scholar 

  94. Vince MA (1948) The intermittency of control movements and the psychological refractory period. Br J Psychol 38:149–157

    CAS  Google Scholar 

  95. Wiggins S (1992) Chaotic transport in dynamical systems. Springer, New York

    Book  Google Scholar 

  96. Winter DA (2005) Biomechanics and motor control of human movement, 3rd edn. Wiley, Toronto

    Google Scholar 

  97. Winter DA, Patla AE, Ishac M, Gielo-Perczak K (1998) Stiffness control of balance during quiet standing. J Neurophysiol 80:1211–1221

    CAS  PubMed  Google Scholar 

  98. Woollacott MH, von Hosten C, Rösbald B (1988) Relation between muscle response onset and body segmental movements during postural perturbations in humans. Exp Brain Res 72:593–604

    Article  CAS  PubMed  Google Scholar 

  99. Yamada N (1995) Chaotic swaying of the upright posture. Hum Mov Sci 14:711–726

    Article  Google Scholar 

Download references

Acknowledgements

JM was supported by the William R. Kenan Jr. Charitable Trust, the National Science Foundation (NS-1028970), and the Invitation Award to Distinguished Scientists by the Hungarian Academy of Sciences. TI and GS were supported by the Hungarian National Science Foundation (OTKA-K105433 and OTKA-K101714).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Milton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Milton, J., Insperger, T., Stepan, G. (2015). Human Balance Control: Dead Zones, Intermittency, and Micro-chaos. In: Ohira, T., Uzawa, T. (eds) Mathematical Approaches to Biological Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55444-8_1

Download citation

Publish with us

Policies and ethics